Efficient image understanding based on the Markov random field model and error backpropagation network

Il Y. Kim, H. Yang
{"title":"Efficient image understanding based on the Markov random field model and error backpropagation network","authors":"Il Y. Kim, H. Yang","doi":"10.1109/ICPR.1992.201595","DOIUrl":null,"url":null,"abstract":"Image labeling is a process of recognizing each segmented region, properly exploiting the properties of the regions and the spatial relationships between regions. In some sense, image labeling is an optimization process of indexing regions using the constraints as to the scene knowledge. This paper further investigates a method of efficiently labeling images using the Markov random field (MRF). MRF model is defined on the region adjacency graph and the labeling is then optimally determined using simulated annealing. The MRF model parameters are automatically estimated using the error backpropagation network. The authors analyze the proposed method through experiments using the real natural scene images.<<ETX>>","PeriodicalId":410961,"journal":{"name":"[1992] Proceedings. 11th IAPR International Conference on Pattern Recognition","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings. 11th IAPR International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Image labeling is a process of recognizing each segmented region, properly exploiting the properties of the regions and the spatial relationships between regions. In some sense, image labeling is an optimization process of indexing regions using the constraints as to the scene knowledge. This paper further investigates a method of efficiently labeling images using the Markov random field (MRF). MRF model is defined on the region adjacency graph and the labeling is then optimally determined using simulated annealing. The MRF model parameters are automatically estimated using the error backpropagation network. The authors analyze the proposed method through experiments using the real natural scene images.<>
基于马尔可夫随机场模型和误差反向传播网络的高效图像理解
图像标记是一个识别每个分割区域的过程,适当地利用区域的属性和区域之间的空间关系。从某种意义上说,图像标注是利用对场景知识的约束对区域进行索引的优化过程。本文进一步研究了一种利用马尔可夫随机场(MRF)高效标记图像的方法。在区域邻接图上定义了MRF模型,并利用模拟退火方法优化确定了标记。利用误差反向传播网络自动估计MRF模型参数。作者通过对真实自然场景图像的实验分析了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信