Gradient flows on projection matrices for subspace estimation

A. Srivastava, D. Fuhrmann
{"title":"Gradient flows on projection matrices for subspace estimation","authors":"A. Srivastava, D. Fuhrmann","doi":"10.1109/ACSSC.1997.679117","DOIUrl":null,"url":null,"abstract":"Estimation of dynamic subspaces is important in blind-channel identification for multiuser wireless communications and active computer vision. Mathematically, a subspace can either be parameterized non-uniquely by a linearly-independent basis, or uniquely, by a projection matrix. We present a stochastic gradient technique for optimization on projective representations of subspaces. This technique is intrinsic, i.e. it utilizes the geometry of underlying parameter space (Grassman manifold) and constructs gradient flows on the manifold for local optimization. The addition of a stochastic component to the search process guarantees global minima and a discrete jump component allows for uncertainty in rank of the subspace (simultaneous model order estimation).","PeriodicalId":240431,"journal":{"name":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1997.679117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Estimation of dynamic subspaces is important in blind-channel identification for multiuser wireless communications and active computer vision. Mathematically, a subspace can either be parameterized non-uniquely by a linearly-independent basis, or uniquely, by a projection matrix. We present a stochastic gradient technique for optimization on projective representations of subspaces. This technique is intrinsic, i.e. it utilizes the geometry of underlying parameter space (Grassman manifold) and constructs gradient flows on the manifold for local optimization. The addition of a stochastic component to the search process guarantees global minima and a discrete jump component allows for uncertainty in rank of the subspace (simultaneous model order estimation).
投影矩阵上的梯度流用于子空间估计
动态子空间估计在多用户无线通信和主动计算机视觉盲信道识别中具有重要意义。在数学上,子空间可以通过线性无关基非唯一地参数化,也可以通过投影矩阵唯一地参数化。我们提出了一种随机梯度技术来优化子空间的射影表示。该技术是固有的,即它利用底层参数空间(格拉斯曼流形)的几何形状,并在流形上构造梯度流以进行局部优化。在搜索过程中添加随机分量保证了全局最小值,而离散跳跃分量允许子空间秩的不确定性(同时模型阶估计)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信