Enhancing Sustainability in Machine Learning-based Android Malware Detection using API calls

Hojun Lee, Seong-je Cho, Hyoil Han, Woosang Cho, Kyoungwon Suh
{"title":"Enhancing Sustainability in Machine Learning-based Android Malware Detection using API calls","authors":"Hojun Lee, Seong-je Cho, Hyoil Han, Woosang Cho, Kyoungwon Suh","doi":"10.1109/AIKE55402.2022.00028","DOIUrl":null,"url":null,"abstract":"The number of malware such as banking Trojans, spyware, and ransomware in Android devices has been rising. In addition, the recent evolution of Android malware makes existing malware detection techniques less effective. This paper shows that existing Android malware detection techniques based on Random Forest classifiers using Application Programming Interface (API) calls as a feature set are not sustainable on a relatively long-time scale. Then, we introduce two new machine learning techniques that exhibit high sustainability. By applying the proposed techniques to 126,000 Android apps, we obtained the highest accuracy of 97,8% and an F1-score of 98.8%.","PeriodicalId":441077,"journal":{"name":"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIKE55402.2022.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The number of malware such as banking Trojans, spyware, and ransomware in Android devices has been rising. In addition, the recent evolution of Android malware makes existing malware detection techniques less effective. This paper shows that existing Android malware detection techniques based on Random Forest classifiers using Application Programming Interface (API) calls as a feature set are not sustainable on a relatively long-time scale. Then, we introduce two new machine learning techniques that exhibit high sustainability. By applying the proposed techniques to 126,000 Android apps, we obtained the highest accuracy of 97,8% and an F1-score of 98.8%.
使用API调用增强基于机器学习的Android恶意软件检测的可持续性
银行木马、间谍软件、勒索软件等恶意软件在安卓设备中的数量一直在上升。此外,最近Android恶意软件的演变使得现有的恶意软件检测技术变得不那么有效。本文表明,现有的基于随机森林分类器的Android恶意软件检测技术,使用API (Application Programming Interface,应用程序编程接口)调用作为特征集,在相对长期的规模上是不可持续的。然后,我们介绍了两种表现出高可持续性的新机器学习技术。通过将所提出的技术应用于126,000个Android应用程序,我们获得了97.8%的最高准确率和98.8%的f1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信