Sparsity regularization path for semi-supervised SVM

G. Gasso, Karina Zapien Arreola, S. Canu
{"title":"Sparsity regularization path for semi-supervised SVM","authors":"G. Gasso, Karina Zapien Arreola, S. Canu","doi":"10.1109/ICMLA.2007.81","DOIUrl":null,"url":null,"abstract":"Using unlabeled data to unravel the structure of the data to leverage the learning process is the goal of semi supervised learning. A common way to represent this underlying structure is to use graphs. Flexibility of the maximum margin kernel framework allows to model graph smoothness and to build kernel machine for semi supervised learning such as Laplacian SVM [1]. But a common complaint of the practitioner is the long running time of these kernel algorithms for classification of new points. We provide an efficient way of alleviating this problem by using a LI penalization term and a regularization path algorithm to efficiently compute the solution. Empirical evidence shows the benefit of the algorithm.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Using unlabeled data to unravel the structure of the data to leverage the learning process is the goal of semi supervised learning. A common way to represent this underlying structure is to use graphs. Flexibility of the maximum margin kernel framework allows to model graph smoothness and to build kernel machine for semi supervised learning such as Laplacian SVM [1]. But a common complaint of the practitioner is the long running time of these kernel algorithms for classification of new points. We provide an efficient way of alleviating this problem by using a LI penalization term and a regularization path algorithm to efficiently compute the solution. Empirical evidence shows the benefit of the algorithm.
半监督支持向量机的稀疏正则化路径
使用未标记的数据来揭示数据的结构以利用学习过程是半监督学习的目标。表示这种底层结构的一种常用方法是使用图。最大余量核框架的灵活性允许对图的平滑性进行建模,并为半监督学习(如拉普拉斯SVM[1])构建核机。但从业者普遍抱怨的一个问题是,这些核算法对新点进行分类的运行时间太长。我们提供了一种有效的方法来缓解这个问题,通过使用LI惩罚项和正则化路径算法来有效地计算解。经验证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信