PredJoule: A Timing-Predictable Energy Optimization Framework for Deep Neural Networks

Soroush Bateni, Husheng Zhou, Yuankun Zhu, Cong Liu
{"title":"PredJoule: A Timing-Predictable Energy Optimization Framework for Deep Neural Networks","authors":"Soroush Bateni, Husheng Zhou, Yuankun Zhu, Cong Liu","doi":"10.1109/RTSS.2018.00020","DOIUrl":null,"url":null,"abstract":"The revolution of deep neural networks (DNNs) is enabling dramatically better autonomy in autonomous driving. However, it is not straightforward to simultaneously achieve both timing predictability (i.e., meeting job latency requirements) and energy efficiency that are essential for any DNN-based autonomous driving system, as they represent two (often) conflicting goals. In this paper, we propose PredJoule, a timing-predictable energy optimization framework for running DNN workloads in a GPU-enabled automotive system. PredJoule achieves both latency guarantees and energy efficiency through a layer-aware design that explores specific performance and energy characteristics of different layers within the same neural network. We implement and evaluate PredJoule on the automotive-specific NVIDIA Jetson TX2 platform for five state-of-the-art DNN models with both high and low variance latency requirements. Experiments show that PredJoule rarely violates job deadlines, and can improve energy by 65% on average compared to five existing approaches and 68% compared to an energy-oriented approach.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2018.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

The revolution of deep neural networks (DNNs) is enabling dramatically better autonomy in autonomous driving. However, it is not straightforward to simultaneously achieve both timing predictability (i.e., meeting job latency requirements) and energy efficiency that are essential for any DNN-based autonomous driving system, as they represent two (often) conflicting goals. In this paper, we propose PredJoule, a timing-predictable energy optimization framework for running DNN workloads in a GPU-enabled automotive system. PredJoule achieves both latency guarantees and energy efficiency through a layer-aware design that explores specific performance and energy characteristics of different layers within the same neural network. We implement and evaluate PredJoule on the automotive-specific NVIDIA Jetson TX2 platform for five state-of-the-art DNN models with both high and low variance latency requirements. Experiments show that PredJoule rarely violates job deadlines, and can improve energy by 65% on average compared to five existing approaches and 68% compared to an energy-oriented approach.
PredJoule:一种时间可预测的深度神经网络能量优化框架
深度神经网络(dnn)的革命正在显著提高自动驾驶的自主性。然而,同时实现时间可预测性(即满足作业延迟要求)和能源效率对于任何基于dnn的自动驾驶系统来说都是必不可少的,因为它们代表了两个(通常)相互冲突的目标。在本文中,我们提出了PredJoule,这是一个时间可预测的能量优化框架,用于在支持gpu的汽车系统中运行DNN工作负载。PredJoule通过一种层感知设计来实现延迟保证和能源效率,该设计探索了同一神经网络中不同层的特定性能和能量特征。我们在汽车专用的NVIDIA Jetson TX2平台上为5个最先进的DNN模型实施和评估PredJoule,这些模型具有高低方差延迟要求。实验表明,PredJoule很少违反工作期限,与现有的五种方法相比,它可以平均提高65%的精力,与以能量为导向的方法相比,它可以提高68%的精力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信