{"title":"Infinitary intersection types as sequences: A new answer to Klop's problem","authors":"Pierre Vial","doi":"10.1109/LICS.2017.8005103","DOIUrl":null,"url":null,"abstract":"We provide a type-theoretical characterization of weakly-normalizing terms in an infinitary lambda-calculus. We adapt for this purpose the standard quantitative (with non-idempotent intersections) type assignment system of the lambda-calculus to our infinite calculus.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2017.8005103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We provide a type-theoretical characterization of weakly-normalizing terms in an infinitary lambda-calculus. We adapt for this purpose the standard quantitative (with non-idempotent intersections) type assignment system of the lambda-calculus to our infinite calculus.