Diametral Covering Number of a Graph

M. Huilgol, Kiran S
{"title":"Diametral Covering Number of a Graph","authors":"M. Huilgol, Kiran S","doi":"10.22457/apam.v24n1a01828","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the diametral covering number of a graph. A subset S of V(G) is said to be a diametral cover for G if every diametral path of G contains at least one vertex of S. The minimum cardinality of S taken over all diametral covers is called the diametral covering number of G and is denoted by σd(G). Here we have given the diametral covering number of several classes of graphs and have given bounds for the same in terms of basic graph parameters. Also, a characterization of graphs having particular diametral covering number is given.","PeriodicalId":305863,"journal":{"name":"Annals of Pure and Applied Mathematics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22457/apam.v24n1a01828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the diametral covering number of a graph. A subset S of V(G) is said to be a diametral cover for G if every diametral path of G contains at least one vertex of S. The minimum cardinality of S taken over all diametral covers is called the diametral covering number of G and is denoted by σd(G). Here we have given the diametral covering number of several classes of graphs and have given bounds for the same in terms of basic graph parameters. Also, a characterization of graphs having particular diametral covering number is given.
图的直径覆盖数
本文引入了图的直径覆盖数。如果G的每条径径路径都包含至少一个S的顶点,则称V(G)的一个子集S为G的一个径盖,S占据所有径盖的最小基数称为G的径盖数,用σd(G)表示。在这里,我们给出了几类图的直径覆盖数,并给出了图的基本参数的范围。此外,还给出了具有特定直径覆盖数的图的一个表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信