Exact Lyapunov exponents of the generalized Boole transformations

K. Umeno, K. Okubo
{"title":"Exact Lyapunov exponents of the generalized Boole transformations","authors":"K. Umeno, K. Okubo","doi":"10.1093/ptep/ptv195","DOIUrl":null,"url":null,"abstract":"The generalized Boole transformations have rich behavior ranging from the \\textit{mixing} phase with the Cauchy invariant measure to the \\textit{dissipative} phase through the \\textit{infinite ergodic} phase with the Lebesgue measure. In this Letter, by giving the proof of mixing property for $0 0$ and bridge those three phase \\textit{continuously}. We found the different scale behavior of the Lyapunov exponent near $\\alpha=1$ using analytic formula with the parameter $\\alpha$. In particular, for $0<\\alpha<1$, we then prove an existence of extremely sensitive dependency of Lyapunov exponents, where the absolute values of the derivative of Lyapunov exponents with respect to the parameter $\\alpha$ diverge to infinity in the limit of $\\alpha\\to 0$, and $\\alpha \\to 1$. This result shows the computational complexity on the numerical simulations of the Lyapunov exponents near $\\alpha \\simeq$ 0, 1.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ptep/ptv195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The generalized Boole transformations have rich behavior ranging from the \textit{mixing} phase with the Cauchy invariant measure to the \textit{dissipative} phase through the \textit{infinite ergodic} phase with the Lebesgue measure. In this Letter, by giving the proof of mixing property for $0 0$ and bridge those three phase \textit{continuously}. We found the different scale behavior of the Lyapunov exponent near $\alpha=1$ using analytic formula with the parameter $\alpha$. In particular, for $0<\alpha<1$, we then prove an existence of extremely sensitive dependency of Lyapunov exponents, where the absolute values of the derivative of Lyapunov exponents with respect to the parameter $\alpha$ diverge to infinity in the limit of $\alpha\to 0$, and $\alpha \to 1$. This result shows the computational complexity on the numerical simulations of the Lyapunov exponents near $\alpha \simeq$ 0, 1.
广义布尔变换的精确Lyapunov指数
广义布尔变换具有丰富的性质,从具有柯西不变测度的\textit{混合}相到具有勒贝格测度的\textit{无限遍历}相的\textit{耗散}相。在这封信中,通过证明$0 0$的混合性质,并\textit{连续}桥接这三个阶段。利用参数为$\alpha$的解析公式,我们发现了Lyapunov指数在$\alpha=1$附近的不同尺度行为。特别地,对于$0<\alpha<1$,我们证明了Lyapunov指数的极度敏感依赖的存在性,其中Lyapunov指数对参数$\alpha$的导数的绝对值在$\alpha\to 0$和$\alpha \to 1$的极限下发散到无穷大。这一结果表明了在$\alpha \simeq$ 0,1附近的Lyapunov指数数值模拟的计算复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信