Thermal-to-Color Image Translation for Enhancing Visual Odometry of Thermal Vision

Liyun Zhang, P. Ratsamee, Yuuki Uranishi, Manabu Higashida, H. Takemura
{"title":"Thermal-to-Color Image Translation for Enhancing Visual Odometry of Thermal Vision","authors":"Liyun Zhang, P. Ratsamee, Yuuki Uranishi, Manabu Higashida, H. Takemura","doi":"10.1109/SSRR56537.2022.10018810","DOIUrl":null,"url":null,"abstract":"A panoptic perception-based generative adversarial network for thermal-to-color image translation is proposed to demonstrate its potential as an image sequence enhancement for monocular visual odometry in blurry and low-resolution thermal vision. The pre-trained panoptic segmentation model is utilized to obtain the panoptic perception (i.e., bounding boxes, categories, and masks) of the image scene to guide the alignment between the object content codes of the original thermal domain and panoptic-level style codes sampled from the target color style space. A feature masking module further refines the style-aligned object representations for sharpening object boundaries to synthesize higher fidelity translated color image sequences. The extensive experimental evaluation shows that our method outperforms other thermal-to-color image translation methods in the image quality of translated color images. We demonstrate that the enhanced image sequences significantly improve the performance of monocular visual odometry compared with dif-ferent competing methods including thermal image sequences.","PeriodicalId":272862,"journal":{"name":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR56537.2022.10018810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A panoptic perception-based generative adversarial network for thermal-to-color image translation is proposed to demonstrate its potential as an image sequence enhancement for monocular visual odometry in blurry and low-resolution thermal vision. The pre-trained panoptic segmentation model is utilized to obtain the panoptic perception (i.e., bounding boxes, categories, and masks) of the image scene to guide the alignment between the object content codes of the original thermal domain and panoptic-level style codes sampled from the target color style space. A feature masking module further refines the style-aligned object representations for sharpening object boundaries to synthesize higher fidelity translated color image sequences. The extensive experimental evaluation shows that our method outperforms other thermal-to-color image translation methods in the image quality of translated color images. We demonstrate that the enhanced image sequences significantly improve the performance of monocular visual odometry compared with dif-ferent competing methods including thermal image sequences.
增强热视觉视觉里程计的热色图像转换
提出了一种基于全视感知的生成对抗网络,用于热图像到彩色图像的转换,以证明其在模糊和低分辨率热视觉中作为单眼视觉测距图像序列增强的潜力。利用预训练的全视分割模型获取图像场景的全视感知(即边界框、类别、蒙版),引导原热域的对象内容码与从目标颜色样式空间采样的全视级样式码对齐。特征掩蔽模块进一步细化了样式对齐的对象表示,以锐化对象边界,以合成更高保真度的转换彩色图像序列。大量的实验评估表明,我们的方法在翻译彩色图像的图像质量上优于其他热彩色图像转换方法。结果表明,与包括热图像序列在内的其他竞争方法相比,增强图像序列显著提高了单目视觉里程计的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信