Probabilistic localization with a blind robot

Lawrence H. Erickson, Joseph Knuth, J. O’Kane, S. LaValle
{"title":"Probabilistic localization with a blind robot","authors":"Lawrence H. Erickson, Joseph Knuth, J. O’Kane, S. LaValle","doi":"10.1109/ROBOT.2008.4543472","DOIUrl":null,"url":null,"abstract":"Researchers have addressed the localization problem for mobile robots using many different kinds of sensors, including rangefinders, cameras, and odometers. In this paper, we consider localization using a robot that is virtually \"blind\", having only a clock and contact sensor at its disposal. This represents a drastic reduction in sensing requirements, even in light of existing work that considers localization with limited sensing. We present probabilistic techniques that represent and update the robot's position uncertainty and algorithms to reduce this uncertainty. We demonstrate the experimental effectiveness of these methods using a Roomba autonomous vacuum cleaner robot in laboratory environments.","PeriodicalId":351230,"journal":{"name":"2008 IEEE International Conference on Robotics and Automation","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2008.4543472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Researchers have addressed the localization problem for mobile robots using many different kinds of sensors, including rangefinders, cameras, and odometers. In this paper, we consider localization using a robot that is virtually "blind", having only a clock and contact sensor at its disposal. This represents a drastic reduction in sensing requirements, even in light of existing work that considers localization with limited sensing. We present probabilistic techniques that represent and update the robot's position uncertainty and algorithms to reduce this uncertainty. We demonstrate the experimental effectiveness of these methods using a Roomba autonomous vacuum cleaner robot in laboratory environments.
盲机器人的概率定位
研究人员已经使用许多不同类型的传感器解决了移动机器人的定位问题,包括测距仪、相机和里程表。在本文中,我们考虑使用一个几乎“失明”的机器人进行定位,它只有一个时钟和接触传感器可供使用。这代表了传感需求的急剧减少,即使考虑到现有的工作,本地化与有限的传感。我们提出了表示和更新机器人位置不确定性的概率技术,以及减少这种不确定性的算法。我们在实验室环境中使用Roomba自动真空吸尘器机器人演示了这些方法的实验有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信