Digital image watermarking in sparse domain

F. Deeba, Fayaz Ali Dharejo, Yuanchun Zhou, Parvez Ahmed Memon, Hira Memon, Saeed Ahmed Khan, Nauman Ali Larik
{"title":"Digital image watermarking in sparse domain","authors":"F. Deeba, Fayaz Ali Dharejo, Yuanchun Zhou, Parvez Ahmed Memon, Hira Memon, Saeed Ahmed Khan, Nauman Ali Larik","doi":"10.1080/19393555.2021.1919250","DOIUrl":null,"url":null,"abstract":"ABSTRACT A watermarking method based on a robust sparse domain is proposed in this paper, which integrates the secret information into the significant sparse elements of the original image. Our algorithm protects the original data by a two-way security process to embed confidential information. First of all, converting the watermark logo into a discrete transform coefficient (DCT) is the protection process. Then, using the dictionary learning method, the transformed coefficient is embedded in the selected effective sparse coefficient in the original image. The embedded logo is extracted from the selected effective sparse coefficient using the sparse orthogonal matching tracking algorithm (OMP) domain. Then, the discrete inverse transformation is performed. To check the algorithm’s efficiency, numerous specific attacks are checked. The experimental results show that the algorithm can recover the embedded watermark with precision without losing any information.","PeriodicalId":103842,"journal":{"name":"Information Security Journal: A Global Perspective","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Security Journal: A Global Perspective","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19393555.2021.1919250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT A watermarking method based on a robust sparse domain is proposed in this paper, which integrates the secret information into the significant sparse elements of the original image. Our algorithm protects the original data by a two-way security process to embed confidential information. First of all, converting the watermark logo into a discrete transform coefficient (DCT) is the protection process. Then, using the dictionary learning method, the transformed coefficient is embedded in the selected effective sparse coefficient in the original image. The embedded logo is extracted from the selected effective sparse coefficient using the sparse orthogonal matching tracking algorithm (OMP) domain. Then, the discrete inverse transformation is performed. To check the algorithm’s efficiency, numerous specific attacks are checked. The experimental results show that the algorithm can recover the embedded watermark with precision without losing any information.
稀疏域数字图像水印
提出了一种基于鲁棒稀疏域的水印方法,该方法将秘密信息整合到原始图像的重要稀疏元素中。我们的算法通过嵌入机密信息的双向安全过程来保护原始数据。首先,将水印标志转换成离散变换系数(DCT)是保护过程。然后,利用字典学习的方法,将变换后的系数嵌入到原图像中选取的有效稀疏系数中;利用稀疏正交匹配跟踪算法(OMP)域从选取的有效稀疏系数中提取嵌入的logo。然后,进行离散逆变换。为了检验算法的效率,我们检查了大量的特定攻击。实验结果表明,该算法可以在不丢失任何信息的情况下精确地恢复嵌入的水印。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信