Out-of-Plane Motion Detection System Using Convolutional Neural Network for US-guided Radiofrequency Ablation Therapy

Ryosuke Kondo, N. Koizumi, Yu Nishiyama, Naoki Matsumoto, K. Numata
{"title":"Out-of-Plane Motion Detection System Using Convolutional Neural Network for US-guided Radiofrequency Ablation Therapy","authors":"Ryosuke Kondo, N. Koizumi, Yu Nishiyama, Naoki Matsumoto, K. Numata","doi":"10.1109/URAI.2018.8441865","DOIUrl":null,"url":null,"abstract":"Radiofrequency ablation therapy support system aims to display the true tumor position by tracking the tumor at the time of treatment. As a major cause of the error, the tumor moves in the direction which is perpendicular to the scan plane of the ultrasound image. Therefore, in the proposed method, the six-axis movement amount is estimated from two ultrasound images by a convolution neural network. By this method, we estimated the amount of movement in the direction perpendicular to the ultrasound image plane and aimed at tracking more accurately. We conducted an experiment to estimate the probe movement amount with respect to the liver phantom and confirmed the certain effectiveness of this method.","PeriodicalId":347727,"journal":{"name":"2018 15th International Conference on Ubiquitous Robots (UR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2018.8441865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Radiofrequency ablation therapy support system aims to display the true tumor position by tracking the tumor at the time of treatment. As a major cause of the error, the tumor moves in the direction which is perpendicular to the scan plane of the ultrasound image. Therefore, in the proposed method, the six-axis movement amount is estimated from two ultrasound images by a convolution neural network. By this method, we estimated the amount of movement in the direction perpendicular to the ultrasound image plane and aimed at tracking more accurately. We conducted an experiment to estimate the probe movement amount with respect to the liver phantom and confirmed the certain effectiveness of this method.
基于卷积神经网络的面外运动检测系统在超声引导下射频消融治疗中的应用
射频消融治疗支持系统旨在通过在治疗时对肿瘤的跟踪显示肿瘤的真实位置。作为误差的主要原因,肿瘤在垂直于超声图像扫描平面的方向上运动。因此,在该方法中,通过卷积神经网络从两张超声图像中估计六轴运动量。通过该方法,我们估计了垂直于超声图像平面方向的运动量,旨在更准确地跟踪。我们通过实验估计了探头相对于肝模的移动量,并证实了该方法的一定有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信