ASAP: A Self-Adaptive Prediction System for Instant Cloud Resource Demand Provisioning

Yexi Jiang, Chang-Shing Perng, Tao Li, Rong N. Chang
{"title":"ASAP: A Self-Adaptive Prediction System for Instant Cloud Resource Demand Provisioning","authors":"Yexi Jiang, Chang-Shing Perng, Tao Li, Rong N. Chang","doi":"10.1109/ICDM.2011.25","DOIUrl":null,"url":null,"abstract":"The promise of cloud computing is to provide computing resources instantly whenever they are needed. The state-of-art virtual machine (VM) provisioning technology can provision a VM in tens of minutes. This latency is unacceptable for jobs that need to scale out during computation. To truly enable on-the-fly scaling, new VM needs to be ready in seconds upon request. In this paper, We present an online temporal data mining system called ASAP, to model and predict the cloud VM demands. ASAP aims to extract high level characteristics from VM provisioning request stream and notify the provisioning system to prepare VMs in advance. For quantification issue, we propose Cloud Prediction Cost to encodes the cost and constraints of the cloud and guide the training of prediction algorithms. Moreover, we utilize a two-level ensemble method to capture the characteristics of the high transient demands time series. Experimental results using historical data from an IBM cloud in operation demonstrate that ASAP significantly improves the cloud service quality and provides possibility for on-the-fly provisioning.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

The promise of cloud computing is to provide computing resources instantly whenever they are needed. The state-of-art virtual machine (VM) provisioning technology can provision a VM in tens of minutes. This latency is unacceptable for jobs that need to scale out during computation. To truly enable on-the-fly scaling, new VM needs to be ready in seconds upon request. In this paper, We present an online temporal data mining system called ASAP, to model and predict the cloud VM demands. ASAP aims to extract high level characteristics from VM provisioning request stream and notify the provisioning system to prepare VMs in advance. For quantification issue, we propose Cloud Prediction Cost to encodes the cost and constraints of the cloud and guide the training of prediction algorithms. Moreover, we utilize a two-level ensemble method to capture the characteristics of the high transient demands time series. Experimental results using historical data from an IBM cloud in operation demonstrate that ASAP significantly improves the cloud service quality and provides possibility for on-the-fly provisioning.
ASAP:一个即时云资源需求预置的自适应预测系统
云计算的承诺是在需要的时候立即提供计算资源。通过先进的虚拟机发放技术,可以在几十分钟内发放一个虚拟机。对于在计算过程中需要向外扩展的作业来说,这种延迟是不可接受的。要真正启用实时扩展,新的VM需要在请求后几秒钟内准备好。本文提出了一种在线时态数据挖掘系统ASAP,用于对云虚拟机需求进行建模和预测。ASAP旨在从虚拟机发放请求流中提取高级特征,并通知发放系统提前准备虚拟机。对于量化问题,我们提出了云预测成本来编码云的成本和约束,并指导预测算法的训练。此外,我们还利用两级集成方法来捕捉高暂态需求时间序列的特征。使用运行中的IBM云的历史数据的实验结果表明,ASAP显著提高了云服务质量,并提供了动态配置的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信