Autoencoders Learning Sparse Representation

Abhinav Sharma, Ruchir Gupta
{"title":"Autoencoders Learning Sparse Representation","authors":"Abhinav Sharma, Ruchir Gupta","doi":"10.1109/OCIT56763.2022.00017","DOIUrl":null,"url":null,"abstract":"Many regularized autoencoders learn a sparse rep-resentation of data. This type of representation enhances robust-ness against noise and computational efficiencies. Our objective in this paper is to provide the conditions under which sparsity is encouraged by AE under a little less restrictive view of data. We have shown a relaxed observed representation of input data and given the conditions on AE to promote sparsity.","PeriodicalId":425541,"journal":{"name":"2022 OITS International Conference on Information Technology (OCIT)","volume":"117 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 OITS International Conference on Information Technology (OCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCIT56763.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many regularized autoencoders learn a sparse rep-resentation of data. This type of representation enhances robust-ness against noise and computational efficiencies. Our objective in this paper is to provide the conditions under which sparsity is encouraged by AE under a little less restrictive view of data. We have shown a relaxed observed representation of input data and given the conditions on AE to promote sparsity.
学习稀疏表示的自动编码器
许多正则化自编码器学习数据的稀疏表示。这种类型的表示增强了对噪声的鲁棒性和计算效率。在本文中,我们的目标是提供在数据限制较少的情况下,AE鼓励稀疏性的条件。我们展示了输入数据的松弛观测表示,并给出了AE的条件以提高稀疏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信