A location predictor based on dependencies between multiple lifelog data

Masaaki Nishino, Yukihiro Nakamura, T. Yagi, S. Muto, Masanobu Abe
{"title":"A location predictor based on dependencies between multiple lifelog data","authors":"Masaaki Nishino, Yukihiro Nakamura, T. Yagi, S. Muto, Masanobu Abe","doi":"10.1145/1867699.1867702","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for predicting future locations of a person by exploiting the person's past lifelog data. To predict the future location of a person has many applications such as the delivery of information related to the predicted locations: information with limited lifetimes (sales in a supermarket), weather reports, and traffic reports. Most existing methods for prediction only use historical location data, thus they can only handle regular movements; irregular movements are not considered. Our method predicts future locations by using personal calendar entries in addition to GPS(Global positioning system) data. Using calendar entries makes it possible to predict the locations associated with the irregular events indicated by the entries. We make Dynamic Bayesian Networks models for integrating these different kinds of lifelog data so as to yield better predictions. In experiments on real data, our methods can predict irregular movements successfully even with long lead-times, while matching the accuracy of existing schemes in predicting usual movements.","PeriodicalId":107369,"journal":{"name":"Workshop on Location-based Social Networks","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Location-based Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1867699.1867702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we propose a method for predicting future locations of a person by exploiting the person's past lifelog data. To predict the future location of a person has many applications such as the delivery of information related to the predicted locations: information with limited lifetimes (sales in a supermarket), weather reports, and traffic reports. Most existing methods for prediction only use historical location data, thus they can only handle regular movements; irregular movements are not considered. Our method predicts future locations by using personal calendar entries in addition to GPS(Global positioning system) data. Using calendar entries makes it possible to predict the locations associated with the irregular events indicated by the entries. We make Dynamic Bayesian Networks models for integrating these different kinds of lifelog data so as to yield better predictions. In experiments on real data, our methods can predict irregular movements successfully even with long lead-times, while matching the accuracy of existing schemes in predicting usual movements.
基于多个生命日志数据之间的依赖关系的位置预测器
在本文中,我们提出了一种通过利用一个人过去的生活日志数据来预测一个人未来位置的方法。预测一个人未来的位置有许多应用程序,例如与预测位置相关的信息的传递:具有有限生命周期的信息(超市的销售情况)、天气报告和交通报告。大多数现有的预测方法只使用历史位置数据,因此它们只能处理常规运动;不考虑不规则的动作。我们的方法除了使用GPS(全球定位系统)数据外,还使用个人日历条目来预测未来的位置。使用日历条目可以预测与条目所指示的不规则事件相关的位置。我们建立了动态贝叶斯网络模型来整合这些不同类型的生活日志数据,从而产生更好的预测。在实际数据的实验中,我们的方法可以在较长的交货期下成功预测不规则运动,同时在预测常规运动方面的准确性与现有方案相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信