On Interpretability of CNNs for Multimodal Medical Image Segmentation

Srdan Lazendic, Jens Janssens, Shaoguang Huang, A. Pižurica
{"title":"On Interpretability of CNNs for Multimodal Medical Image Segmentation","authors":"Srdan Lazendic, Jens Janssens, Shaoguang Huang, A. Pižurica","doi":"10.23919/eusipco55093.2022.9909776","DOIUrl":null,"url":null,"abstract":"Despite their huge potential, deep learning-based models are still not trustful enough to warrant their adoption in clinical practice. The research on the interpretability and explainability of deep learning is currently attracting huge attention. Multilayer Convolutional Sparse Coding (ML-CSC) data model, provides a model-based explanation of convolutional neural networks (CNNs). In this article, we extend the ML-CSC framework towards multimodal data for medical image segmentation, and propose a merged joint feature extraction ML-CSC model. This work generalizes and improves upon our previous model, by deriving a more elegant approach that merges feature extraction and convolutional sparse coding in a unified framework. A segmentation study on a multimodal magnetic resonance imaging (MRI) dataset confirms the effectiveness of the proposed approach. We also supply an interpretability study regarding the involved model parameters.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Despite their huge potential, deep learning-based models are still not trustful enough to warrant their adoption in clinical practice. The research on the interpretability and explainability of deep learning is currently attracting huge attention. Multilayer Convolutional Sparse Coding (ML-CSC) data model, provides a model-based explanation of convolutional neural networks (CNNs). In this article, we extend the ML-CSC framework towards multimodal data for medical image segmentation, and propose a merged joint feature extraction ML-CSC model. This work generalizes and improves upon our previous model, by deriving a more elegant approach that merges feature extraction and convolutional sparse coding in a unified framework. A segmentation study on a multimodal magnetic resonance imaging (MRI) dataset confirms the effectiveness of the proposed approach. We also supply an interpretability study regarding the involved model parameters.
多模态医学图像分割的cnn可解释性研究
尽管有巨大的潜力,但基于深度学习的模型仍然不够可信,不足以保证在临床实践中采用。关于深度学习的可解释性和可解释性的研究目前备受关注。多层卷积稀疏编码(ML-CSC)数据模型为卷积神经网络(cnn)提供了一种基于模型的解释。在本文中,我们将ML-CSC框架扩展到医学图像分割的多模态数据,并提出了一个合并的联合特征提取ML-CSC模型。这项工作在我们之前的模型上进行了推广和改进,通过推导出一种更优雅的方法,将特征提取和卷积稀疏编码合并在一个统一的框架中。对多模态磁共振成像(MRI)数据集的分割研究证实了所提出方法的有效性。我们还提供了关于所涉及的模型参数的可解释性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信