Predicting visual stimuli from cortical response recorded with widefield imaging in a mouse

Daniela De Luca, S. Moccia, L. Lupori, Raffaele Mazziotti, T. Pizzorusso, S. Micera
{"title":"Predicting visual stimuli from cortical response recorded with widefield imaging in a mouse","authors":"Daniela De Luca, S. Moccia, L. Lupori, Raffaele Mazziotti, T. Pizzorusso, S. Micera","doi":"10.1109/SENSORS52175.2022.9967250","DOIUrl":null,"url":null,"abstract":"Optic nerve stimulation holds great potential for visual prostheses. Its effectiveness depends on the stimulation protocol, which can be optimized to achieve cortical activation similar to that evoked in response to visual stimuli. To identify a target cortical activation, it is necessary to characterize the cortical response. We here propose a convolutional neural network (CNN) to do it exploiting widefield calcium brain images, which allow large-scale visualization of cortical activity with high signal-to-noise ratio. A mouse was presented with 10 different visual stimuli, and the activity from its primary visual cortex (V1) was recorded. The CNN was trained to predict the visual stimulus, with an accuracy of 78.46%±3.31% on the test set, showing it is possible to automatically detect what is present in the visual field of the animal.","PeriodicalId":120357,"journal":{"name":"2022 IEEE Sensors","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS52175.2022.9967250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optic nerve stimulation holds great potential for visual prostheses. Its effectiveness depends on the stimulation protocol, which can be optimized to achieve cortical activation similar to that evoked in response to visual stimuli. To identify a target cortical activation, it is necessary to characterize the cortical response. We here propose a convolutional neural network (CNN) to do it exploiting widefield calcium brain images, which allow large-scale visualization of cortical activity with high signal-to-noise ratio. A mouse was presented with 10 different visual stimuli, and the activity from its primary visual cortex (V1) was recorded. The CNN was trained to predict the visual stimulus, with an accuracy of 78.46%±3.31% on the test set, showing it is possible to automatically detect what is present in the visual field of the animal.
利用小鼠宽视场成像记录的皮层反应预测视觉刺激
视神经刺激在视觉修复中具有巨大的潜力。它的有效性取决于刺激方案,该方案可以优化以实现类似于视觉刺激引起的皮层激活。为了确定目标皮层激活,有必要表征皮层反应。我们在这里提出了一个卷积神经网络(CNN)来利用宽视场钙脑图像来实现这一目标,这使得高信噪比的皮质活动大规模可视化成为可能。对小鼠进行10种不同的视觉刺激,记录其初级视觉皮层(V1)的活动。CNN被训练来预测视觉刺激,在测试集上的准确率为78.46%±3.31%,这表明它可以自动检测动物视野中存在的东西。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信