Large-Scale Data Processing for Information Retrieval Applications

Pooya Khandel
{"title":"Large-Scale Data Processing for Information Retrieval Applications","authors":"Pooya Khandel","doi":"10.1145/3539618.3591797","DOIUrl":null,"url":null,"abstract":"Developing Information Retrieval (IR) applications such as search engines and recommendation systems require training of models that are growing in complexity and size with immense collections of data that contain multiple dimensions (documents/items text, user profiles, and interactions). Much of the research in IR concentrates on improving the performance of ranking models; however, given the high training time and high computational resources required to improve the performance by designing new models, it is crucial to address efficiency aspects of the design and deployment of IR applications at large-scale. In my thesis, I aim to improve the training efficiency of IR applications and speed up the development phase of new models, by applying dataset distillation approaches to reduce the dataset size while preserving the ranking quality and employing efficient High-Performance Computing (HPC) solutions to increase the processing speed.","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3591797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing Information Retrieval (IR) applications such as search engines and recommendation systems require training of models that are growing in complexity and size with immense collections of data that contain multiple dimensions (documents/items text, user profiles, and interactions). Much of the research in IR concentrates on improving the performance of ranking models; however, given the high training time and high computational resources required to improve the performance by designing new models, it is crucial to address efficiency aspects of the design and deployment of IR applications at large-scale. In my thesis, I aim to improve the training efficiency of IR applications and speed up the development phase of new models, by applying dataset distillation approaches to reduce the dataset size while preserving the ranking quality and employing efficient High-Performance Computing (HPC) solutions to increase the processing speed.
面向信息检索应用的大规模数据处理
开发诸如搜索引擎和推荐系统之类的信息检索(Information Retrieval, IR)应用程序需要对模型进行训练,这些模型的复杂性和规模都在不断增长,其中包含了包含多个维度(文档/项目文本、用户配置文件和交互)的大量数据集合。IR的大部分研究都集中在提高排名模型的性能上;然而,考虑到通过设计新模型来提高性能所需的高训练时间和高计算资源,解决大规模IR应用程序设计和部署的效率问题至关重要。在我的论文中,我的目标是提高IR应用程序的训练效率,加快新模型的开发阶段,通过应用数据集蒸馏方法来减少数据集大小,同时保持排名质量,并采用高效的高性能计算(HPC)解决方案来提高处理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信