Classification with Multi-Modal Classes Using Evolutionary Algorithms and Constrained Clustering

T. Covões, Eduardo R. Hruschka
{"title":"Classification with Multi-Modal Classes Using Evolutionary Algorithms and Constrained Clustering","authors":"T. Covões, Eduardo R. Hruschka","doi":"10.1109/CEC.2018.8477858","DOIUrl":null,"url":null,"abstract":"Constrained clustering has been an active research topic in the last decade. Among the different kinds of constraints, must-link and cannot-link are the most adopted ones. However, most algorithms assume that the number of clusters are known a priori. Besides this usually unrealistic assumption, one often ignores the fact that must-link constraints may correspond to objects in different density regions of the input space, thereby requiring a more complex structure to represent the underlying concept. Aimed at overcoming these limitations, we present the Feasible-Infeasible Evolutionary Create & Eliminate for Expectation Maximization (FIECE-EM), which identifies a Gaussian Mixture Model that is a good fit for the data, while meeting the constraints provided. We compare FIECE-EM with a state-of-the-art algorithm. Our results indicate that FIECE-EM obtains competitive results, without the need for fine-tuning a tradeoff parameter as in the state-of-the-art algorithm under comparison.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Constrained clustering has been an active research topic in the last decade. Among the different kinds of constraints, must-link and cannot-link are the most adopted ones. However, most algorithms assume that the number of clusters are known a priori. Besides this usually unrealistic assumption, one often ignores the fact that must-link constraints may correspond to objects in different density regions of the input space, thereby requiring a more complex structure to represent the underlying concept. Aimed at overcoming these limitations, we present the Feasible-Infeasible Evolutionary Create & Eliminate for Expectation Maximization (FIECE-EM), which identifies a Gaussian Mixture Model that is a good fit for the data, while meeting the constraints provided. We compare FIECE-EM with a state-of-the-art algorithm. Our results indicate that FIECE-EM obtains competitive results, without the need for fine-tuning a tradeoff parameter as in the state-of-the-art algorithm under comparison.
基于进化算法和约束聚类的多模态分类
约束聚类是近十年来一个活跃的研究课题。在不同类型的约束中,必须链接和不能链接是最常用的约束。然而,大多数算法都假定集群的数量是已知的。除了这个通常不切实际的假设之外,人们常常忽略了一个事实,即必须链接约束可能对应于输入空间中不同密度区域中的对象,因此需要更复杂的结构来表示潜在的概念。为了克服这些限制,我们提出了可行-不可行的期望最大化进化创建和消除(FIECE-EM),它识别了一个高斯混合模型,该模型很好地适合数据,同时满足所提供的约束。我们将FIECE-EM与最先进的算法进行比较。我们的研究结果表明,FIECE-EM获得了具有竞争力的结果,而不需要像比较中最先进的算法那样对权衡参数进行微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信