KBRS — Keyword based recommendation system in social networks

Sandra Elizabeth Salim, R. Jebakumar
{"title":"KBRS — Keyword based recommendation system in social networks","authors":"Sandra Elizabeth Salim, R. Jebakumar","doi":"10.1109/ICIICT.2015.7396081","DOIUrl":null,"url":null,"abstract":"Social networks form an important platform for information sharing and interaction among users. The content from social networks can be used to generate recommendations for users in order to help them to choose what they desire. There exist a lot of recommendation methods currently. In this paper, we propose a keyword based recommendation system (KBRS), where the user's preferences are indicated by keywords. Here, we use a user based collaborative filtering (UCF) algorithm to provide recommendations. In order to support a more efficient and scalable execution, KBRS is implemented in Hadoop, using Map Reduce paradigm.","PeriodicalId":135283,"journal":{"name":"International Confernce on Innovation Information in Computing Technologies","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Confernce on Innovation Information in Computing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIICT.2015.7396081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Social networks form an important platform for information sharing and interaction among users. The content from social networks can be used to generate recommendations for users in order to help them to choose what they desire. There exist a lot of recommendation methods currently. In this paper, we propose a keyword based recommendation system (KBRS), where the user's preferences are indicated by keywords. Here, we use a user based collaborative filtering (UCF) algorithm to provide recommendations. In order to support a more efficient and scalable execution, KBRS is implemented in Hadoop, using Map Reduce paradigm.
社会化网络中基于关键词的推荐系统
社交网络是用户之间信息共享和互动的重要平台。来自社交网络的内容可以用来为用户生成推荐,以帮助他们选择他们想要的东西。目前存在很多推荐方法。在本文中,我们提出了一个基于关键词的推荐系统(KBRS),其中用户的偏好由关键词表示。在这里,我们使用基于用户的协同过滤(UCF)算法来提供推荐。为了支持更高效和可扩展的执行,KBRS在Hadoop中实现,使用Map Reduce范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信