Learning to rank graphs for online similar graph search

Bingjun Sun, P. Mitra, C. Lee Giles
{"title":"Learning to rank graphs for online similar graph search","authors":"Bingjun Sun, P. Mitra, C. Lee Giles","doi":"10.1145/1645953.1646252","DOIUrl":null,"url":null,"abstract":"Many applications in structure matching require the ability to search for graphs that are similar to a query graph, i.e., similarity graph queries. Prior works, especially in chemoinformatics, have used the maximum common edge subgraph (MCEG) to compute the graph similarity. This approach is prohibitively slow for real-time queries. In this work, we propose an algorithm that extracts and indexes subgraph features from a graph dataset. It computes the similarity of graphs using a linear graph kernel based on feature weights learned offline from a training set generated using MCEG. We show empirically that our proposed algorithm of learning to rank graphs can achieve higher normalized discounted cumulative gain compared with existing optimal methods based on MCEG. The running time of our algorithm is orders of magnitude faster than these existing methods.","PeriodicalId":286251,"journal":{"name":"Proceedings of the 18th ACM conference on Information and knowledge management","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1645953.1646252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Many applications in structure matching require the ability to search for graphs that are similar to a query graph, i.e., similarity graph queries. Prior works, especially in chemoinformatics, have used the maximum common edge subgraph (MCEG) to compute the graph similarity. This approach is prohibitively slow for real-time queries. In this work, we propose an algorithm that extracts and indexes subgraph features from a graph dataset. It computes the similarity of graphs using a linear graph kernel based on feature weights learned offline from a training set generated using MCEG. We show empirically that our proposed algorithm of learning to rank graphs can achieve higher normalized discounted cumulative gain compared with existing optimal methods based on MCEG. The running time of our algorithm is orders of magnitude faster than these existing methods.
学习为在线相似图搜索排序图
结构匹配中的许多应用程序都需要能够搜索与查询图相似的图,即相似图查询。先前的研究,特别是在化学信息学中,已经使用最大公共边子图(MCEG)来计算图的相似度。这种方法对于实时查询来说太慢了。在这项工作中,我们提出了一种从图数据集中提取和索引子图特征的算法。它使用基于从使用MCEG生成的训练集离线学习的特征权重的线性图核来计算图的相似性。我们的经验表明,与现有的基于MCEG的最优方法相比,我们提出的学习排序图的算法可以获得更高的归一化贴现累积增益。我们的算法的运行时间比这些现有的方法快了几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信