A Robust Test for OLS Trends in Daily Temperature Data

Jamal Munshi
{"title":"A Robust Test for OLS Trends in Daily Temperature Data","authors":"Jamal Munshi","doi":"10.2139/ssrn.2631298","DOIUrl":null,"url":null,"abstract":"Trends in time series data estimated with OLS linear regression may be tested with a robust procedure that is less sensitive to influential observations and violations of regression assumptions. The test consists of comparing the average age of data tritiles. If the higher tritiles are newer a rising trend is indicated for the sample period. If the higher tritiles are older a declining trend is indicated. If neither of these conditions is met, no sustained trend in the sample period may be inferred from the data. Daily temperature data from selected USHCN and USCRN stations are used to demonstrate the utility of the proposed methodology.","PeriodicalId":135089,"journal":{"name":"SRPN: Carbon Reduction (Topic)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SRPN: Carbon Reduction (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2631298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Trends in time series data estimated with OLS linear regression may be tested with a robust procedure that is less sensitive to influential observations and violations of regression assumptions. The test consists of comparing the average age of data tritiles. If the higher tritiles are newer a rising trend is indicated for the sample period. If the higher tritiles are older a declining trend is indicated. If neither of these conditions is met, no sustained trend in the sample period may be inferred from the data. Daily temperature data from selected USHCN and USCRN stations are used to demonstrate the utility of the proposed methodology.
日温度数据OLS趋势的稳健性检验
用OLS线性回归估计的时间序列数据的趋势可以用对有影响的观测值和违反回归假设不太敏感的稳健程序进行检验。该测试包括比较数据三分位的平均年龄。如果较高的三分位数较新,则表明在样本期内呈上升趋势。如果较高的三分位数较老,则显示出下降趋势。如果这两个条件都不满足,就不能从数据中推断出样本期内的持续趋势。选定的USHCN和USCRN站点的日温度数据用于证明所提出方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信