Physical Security Using Machine Learning to Detect Lock Picking at Traffic Cabinets

Hannon Shepard, Michael Young, Billy Kihei
{"title":"Physical Security Using Machine Learning to Detect Lock Picking at Traffic Cabinets","authors":"Hannon Shepard, Michael Young, Billy Kihei","doi":"10.1109/ICCE53296.2022.9730555","DOIUrl":null,"url":null,"abstract":"Traffic systems are filled with essential traffic control equipment and can cause massive infrastructural damage and driver safety if hacked. We explore a machine learning method to detect real-time lock picking to thwart unauthorized access to the electronics. We gather accelerometer and gyroscopic data to train a decision tree model for detecting lock picking. Analysis reveals that a standard deviation feature for only two accelerometer axes is adequate for achieving robust performance. We deployed an real-time decision tree model to an offsite test cabinet that achieves an accuracy of over 95 %.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic systems are filled with essential traffic control equipment and can cause massive infrastructural damage and driver safety if hacked. We explore a machine learning method to detect real-time lock picking to thwart unauthorized access to the electronics. We gather accelerometer and gyroscopic data to train a decision tree model for detecting lock picking. Analysis reveals that a standard deviation feature for only two accelerometer axes is adequate for achieving robust performance. We deployed an real-time decision tree model to an offsite test cabinet that achieves an accuracy of over 95 %.
使用机器学习检测交通柜开锁的物理安全
交通系统充满了必要的交通控制设备,如果被黑客入侵,可能会造成大规模的基础设施破坏和司机安全。我们探索了一种机器学习方法来检测实时开锁,以阻止未经授权的电子设备访问。我们收集加速度计和陀螺仪的数据来训练一个决策树模型来检测开锁。分析表明,只有两个加速度计轴的标准偏差特征足以实现稳健的性能。我们将实时决策树模型部署到一个非现场测试柜中,其准确率超过95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信