{"title":"Physical Security Using Machine Learning to Detect Lock Picking at Traffic Cabinets","authors":"Hannon Shepard, Michael Young, Billy Kihei","doi":"10.1109/ICCE53296.2022.9730555","DOIUrl":null,"url":null,"abstract":"Traffic systems are filled with essential traffic control equipment and can cause massive infrastructural damage and driver safety if hacked. We explore a machine learning method to detect real-time lock picking to thwart unauthorized access to the electronics. We gather accelerometer and gyroscopic data to train a decision tree model for detecting lock picking. Analysis reveals that a standard deviation feature for only two accelerometer axes is adequate for achieving robust performance. We deployed an real-time decision tree model to an offsite test cabinet that achieves an accuracy of over 95 %.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic systems are filled with essential traffic control equipment and can cause massive infrastructural damage and driver safety if hacked. We explore a machine learning method to detect real-time lock picking to thwart unauthorized access to the electronics. We gather accelerometer and gyroscopic data to train a decision tree model for detecting lock picking. Analysis reveals that a standard deviation feature for only two accelerometer axes is adequate for achieving robust performance. We deployed an real-time decision tree model to an offsite test cabinet that achieves an accuracy of over 95 %.