A Multi-Objective Evolutionary Approach to Discover Explainability Trade-Offs when Using Linear Regression to Effectively Model the Dynamic Thermal Behaviour of Electrical Machines

Tiwonge Msulira Banda, Alexandru-Ciprian Zavoianu, Andrei V. Petrovski, Daniel Wöckinger, G. Bramerdorfer
{"title":"A Multi-Objective Evolutionary Approach to Discover Explainability Trade-Offs when Using Linear Regression to Effectively Model the Dynamic Thermal Behaviour of Electrical Machines","authors":"Tiwonge Msulira Banda, Alexandru-Ciprian Zavoianu, Andrei V. Petrovski, Daniel Wöckinger, G. Bramerdorfer","doi":"10.1145/3597618","DOIUrl":null,"url":null,"abstract":"Modelling and controlling heat transfer in rotating electrical machines is very important as it enables the design of assemblies (e.g., motors) that are efficient and durable under multiple operational scenarios. To address the challenge of deriving accurate data-driven estimators of key motor temperatures, we propose a multi-objective strategy for creating Linear Regression (LR) models that integrate optimised synthetic features. The main strength of our approach is that it provides decision makers with a clear overview of the optimal trade-offs between data collection costs, the expected modelling errors and the overall explainability of the generated thermal models. Moreover, as parsimonious models are required for both microcontroller deployment and domain expert interpretation, our modelling strategy contains a simple but effective step-wise regularisation technique that can be applied to outline domain-relevant mappings between LR variables and thermal profiling capabilities. Results indicate that our approach can generate accurate LR-based dynamic thermal models when training on data associated with a limited set of load points within the safe operating area of the electrical machine under study.","PeriodicalId":220659,"journal":{"name":"ACM Transactions on Evolutionary Learning","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Evolutionary Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modelling and controlling heat transfer in rotating electrical machines is very important as it enables the design of assemblies (e.g., motors) that are efficient and durable under multiple operational scenarios. To address the challenge of deriving accurate data-driven estimators of key motor temperatures, we propose a multi-objective strategy for creating Linear Regression (LR) models that integrate optimised synthetic features. The main strength of our approach is that it provides decision makers with a clear overview of the optimal trade-offs between data collection costs, the expected modelling errors and the overall explainability of the generated thermal models. Moreover, as parsimonious models are required for both microcontroller deployment and domain expert interpretation, our modelling strategy contains a simple but effective step-wise regularisation technique that can be applied to outline domain-relevant mappings between LR variables and thermal profiling capabilities. Results indicate that our approach can generate accurate LR-based dynamic thermal models when training on data associated with a limited set of load points within the safe operating area of the electrical machine under study.
使用线性回归有效地模拟电机动态热行为时,发现可解释性权衡的多目标进化方法
旋转电机中的传热建模和控制是非常重要的,因为它可以设计在多种操作场景下高效耐用的组件(例如电机)。为了解决获得关键电机温度的准确数据驱动估计值的挑战,我们提出了一种多目标策略,用于创建集成优化合成特征的线性回归(LR)模型。我们的方法的主要优势在于,它为决策者提供了数据收集成本、预期建模误差和生成的热模型的总体可解释性之间的最佳权衡的清晰概述。此外,由于微控制器部署和领域专家解释都需要简约的模型,我们的建模策略包含一个简单但有效的逐步正则化技术,可以应用于概述LR变量和热剖面能力之间的领域相关映射。结果表明,我们的方法可以生成准确的基于lr的动态热模型,当训练与所研究的电机安全操作区域内有限负载点集相关的数据时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信