NARMAX identification of DC motor model using repulsive particle swarm optimization

E. Supeni, I. Yassin, A. Ahmad, F. Rahman
{"title":"NARMAX identification of DC motor model using repulsive particle swarm optimization","authors":"E. Supeni, I. Yassin, A. Ahmad, F. Rahman","doi":"10.1109/CSPA.2009.5069176","DOIUrl":null,"url":null,"abstract":"This paper explores the usage of repulsive particle swarm optimization (RPSO) to perform Non-linear Auto-Regressive with exogenous input (NARMAX) system identification of Direct Current (DC) motor. The NARMAX model was constructed using a recurrent Artificial Neural Network (ANN) model by Rahim and Taib and Yassin et al. The comparison result was made between RPSO method and inertia weight-based PSO method by Yassin et al. to train the NARMAX model. The result shows that RPSO yielded comparable performance to the inertia weight-based PSO method in determining NARMAX coefficients in the model.","PeriodicalId":338469,"journal":{"name":"2009 5th International Colloquium on Signal Processing & Its Applications","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 5th International Colloquium on Signal Processing & Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2009.5069176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper explores the usage of repulsive particle swarm optimization (RPSO) to perform Non-linear Auto-Regressive with exogenous input (NARMAX) system identification of Direct Current (DC) motor. The NARMAX model was constructed using a recurrent Artificial Neural Network (ANN) model by Rahim and Taib and Yassin et al. The comparison result was made between RPSO method and inertia weight-based PSO method by Yassin et al. to train the NARMAX model. The result shows that RPSO yielded comparable performance to the inertia weight-based PSO method in determining NARMAX coefficients in the model.
基于排斥粒子群优化的直流电机模型NARMAX辨识
本文探讨了利用排斥粒子群算法(RPSO)对直流电机进行外源输入非线性自回归系统辨识。NARMAX模型由Rahim和Taib以及Yassin等人使用递归人工神经网络(ANN)模型构建。Yassin等将RPSO方法与基于惯性权重的PSO方法进行了NARMAX模型训练的比较结果。结果表明,在确定模型中的NARMAX系数时,粒子群算法与基于惯性权重的粒子群算法具有相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信