Using Numba for GPU acceleration of Neutron Beamline Digital Twins

Cole Kendrick, Jiao Y. Y. Lin, G. Granroth
{"title":"Using Numba for GPU acceleration of Neutron Beamline Digital Twins","authors":"Cole Kendrick, Jiao Y. Y. Lin, G. Granroth","doi":"10.25080/gerudo-f2bc6f59-006","DOIUrl":null,"url":null,"abstract":"—Digital twins of neutron instruments using Monte Carlo ray tracing have proven to be useful in neutron data analysis and verifying instrument and sample designs. However, these simulations can become quite complex and computationally demanding with tens of billions of neutrons. In this paper, we present a GPU accelerated version of MCViNE using Python and Numba to balance user extensibility with performance. Numba is an open-source just-in-time (JIT) compiler for Python using LLVM to generate efficient machine code for CPUs and GPUs with NVIDIA CUDA. The JIT nature of Numba allowed complex instrument kernels to be generated easily. Initial simulations have shown a speedup between 200-1000x over the original CPU implementation. The performance gain with Numba enables more sophisticated data analysis and impacts neutron scattering science and instrument design.","PeriodicalId":364654,"journal":{"name":"Proceedings of the Python in Science Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Python in Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25080/gerudo-f2bc6f59-006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—Digital twins of neutron instruments using Monte Carlo ray tracing have proven to be useful in neutron data analysis and verifying instrument and sample designs. However, these simulations can become quite complex and computationally demanding with tens of billions of neutrons. In this paper, we present a GPU accelerated version of MCViNE using Python and Numba to balance user extensibility with performance. Numba is an open-source just-in-time (JIT) compiler for Python using LLVM to generate efficient machine code for CPUs and GPUs with NVIDIA CUDA. The JIT nature of Numba allowed complex instrument kernels to be generated easily. Initial simulations have shown a speedup between 200-1000x over the original CPU implementation. The performance gain with Numba enables more sophisticated data analysis and impacts neutron scattering science and instrument design.
用Numba实现中子束线数字孪生体的GPU加速
使用蒙特卡罗射线追踪的中子仪器的数字孪生已被证明在中子数据分析和验证仪器和样品设计方面是有用的。然而,这些模拟可能变得相当复杂,并且对数百亿中子的计算要求很高。在本文中,我们提出了一个GPU加速版本的MCViNE,使用Python和Numba来平衡用户可扩展性和性能。Numba是一个开源的Python即时(JIT)编译器,使用LLVM为带有NVIDIA CUDA的cpu和gpu生成高效的机器码。Numba的JIT特性允许很容易地生成复杂的仪器内核。最初的模拟显示,与最初的CPU实现相比,速度提高了200-1000倍。Numba的性能增益可以实现更复杂的数据分析,并影响中子散射科学和仪器设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信