Distributed edge-variant graph filters

M. Coutiño, E. Isufi, G. Leus
{"title":"Distributed edge-variant graph filters","authors":"M. Coutiño, E. Isufi, G. Leus","doi":"10.1109/CAMSAP.2017.8313105","DOIUrl":null,"url":null,"abstract":"The main challenges distributed graph filters face in practice are the communication overhead and computational complexity. In this work, we extend the state-of-the-art distributed finite impulse response (FIR) graph filters to an edge-variant (EV) version, i.e., a filter where every node weights the signals from its neighbors with different values. Besides having the potential to reduce the filter order leading to amenable communication and complexity savings, the EV graph filter generalizes the class of classical and node-variant FIR graph filters. Numerical tests validate our findings and illustrate the potential of the EV graph filters to (i) approximate a user-provided frequency response; and (ii) implement distributed consensus with much lower orders than its direct contenders.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The main challenges distributed graph filters face in practice are the communication overhead and computational complexity. In this work, we extend the state-of-the-art distributed finite impulse response (FIR) graph filters to an edge-variant (EV) version, i.e., a filter where every node weights the signals from its neighbors with different values. Besides having the potential to reduce the filter order leading to amenable communication and complexity savings, the EV graph filter generalizes the class of classical and node-variant FIR graph filters. Numerical tests validate our findings and illustrate the potential of the EV graph filters to (i) approximate a user-provided frequency response; and (ii) implement distributed consensus with much lower orders than its direct contenders.
分布式变边图滤波器
分布式图过滤器在实践中面临的主要挑战是通信开销和计算复杂性。在这项工作中,我们将最先进的分布有限脉冲响应(FIR)图滤波器扩展到边缘变量(EV)版本,即每个节点对来自其邻居的具有不同值的信号进行加权的滤波器。除了有可能减少过滤器的顺序,从而减少通信和复杂性,EV图过滤器推广了经典和节点变量FIR图过滤器的类别。数值测试验证了我们的发现,并说明了EV图滤波器的潜力:(i)近似用户提供的频率响应;(ii)以比其直接竞争者低得多的顺序实现分布式共识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信