Diagonal-Implicitly Iterated Runge-Kutta Methods on Distributed Memory Machines

T. Rauber, G. Rünger
{"title":"Diagonal-Implicitly Iterated Runge-Kutta Methods on Distributed Memory Machines","authors":"T. Rauber, G. Rünger","doi":"10.1142/S0129053399000090","DOIUrl":null,"url":null,"abstract":"We consider diagonal-implicitly iterated Runge–Kutta methods which are one-step methods for stiff ordinary differential equations providing embedded solutions for stepsize control. In these methods, algorithmic parallelism is introduced at the expense of additional computations. In this paper, we concentrate on the algorithmic structure of these Runge–Kutta methods and consider several parallel variants of the method exploiting algorithmic and data parallelism in different ways. Our aim is to investigate whether these variants lead to good performance on current distributed memory machines such as the Intel Paragon and the IBM SP2. As test application we use ordinary differential equations with dense and sparse right-hand side functions.","PeriodicalId":270006,"journal":{"name":"Int. J. High Speed Comput.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. High Speed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129053399000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We consider diagonal-implicitly iterated Runge–Kutta methods which are one-step methods for stiff ordinary differential equations providing embedded solutions for stepsize control. In these methods, algorithmic parallelism is introduced at the expense of additional computations. In this paper, we concentrate on the algorithmic structure of these Runge–Kutta methods and consider several parallel variants of the method exploiting algorithmic and data parallelism in different ways. Our aim is to investigate whether these variants lead to good performance on current distributed memory machines such as the Intel Paragon and the IBM SP2. As test application we use ordinary differential equations with dense and sparse right-hand side functions.
分布式存储机器上的对角隐式迭代龙格-库塔方法
我们考虑了为步长控制提供嵌入解的刚性常微分方程的一步法——斜向隐式迭代龙格-库塔方法。在这些方法中,算法并行性是以额外计算为代价引入的。在本文中,我们将重点讨论这些龙格-库塔方法的算法结构,并考虑该方法的几种并行变体,这些变体以不同的方式利用算法和数据并行性。我们的目标是调查这些变体是否会在当前的分布式内存机器(如Intel Paragon和IBM SP2)上带来良好的性能。作为测试应用,我们使用右手边函数密集稀疏的常微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信