Felipe Gómez-Cuba, Tommaso Zugno, Junseok Kim, Michele Polese, S. Bahk, M. Zorzi
{"title":"Full-stack Hybrid Beamforming in mmWave 5G Networks","authors":"Felipe Gómez-Cuba, Tommaso Zugno, Junseok Kim, Michele Polese, S. Bahk, M. Zorzi","doi":"10.1109/MedComNet52149.2021.9501238","DOIUrl":null,"url":null,"abstract":"This paper analyzes Hybrid Beamforming (HBF) and Multi-User Multiple-Input Multiple-Output (MU-MIMO) in millimeter wave (mmWave) 5th generation (5G) cellular networks considering the full protocol stack with TCP/IP traffic and MAC scheduling. Prior work on HBF and MU-MIMO has assumed full-buffer transmissions and studied link-level performance. We report non-trivial interactions between the HBF technique, the front-loaded channel estimation pilot scheme in NR, and the constraints of MU-MIMO scheduling. We also report that joint multi-user beamforming design is imperative, in the sense that the MU-MIMO system cannot be fully exploited when implemented as a mere collection of single-user analog beams working in parallel. By addressing these issues, throughput can be dramatically increased in mmWave 5G networks by means of Spatial Division Multiple Access (SDMA).","PeriodicalId":272937,"journal":{"name":"2021 19th Mediterranean Communication and Computer Networking Conference (MedComNet)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th Mediterranean Communication and Computer Networking Conference (MedComNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MedComNet52149.2021.9501238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper analyzes Hybrid Beamforming (HBF) and Multi-User Multiple-Input Multiple-Output (MU-MIMO) in millimeter wave (mmWave) 5th generation (5G) cellular networks considering the full protocol stack with TCP/IP traffic and MAC scheduling. Prior work on HBF and MU-MIMO has assumed full-buffer transmissions and studied link-level performance. We report non-trivial interactions between the HBF technique, the front-loaded channel estimation pilot scheme in NR, and the constraints of MU-MIMO scheduling. We also report that joint multi-user beamforming design is imperative, in the sense that the MU-MIMO system cannot be fully exploited when implemented as a mere collection of single-user analog beams working in parallel. By addressing these issues, throughput can be dramatically increased in mmWave 5G networks by means of Spatial Division Multiple Access (SDMA).