Parallel Dense Binary Stereo Matching Using CUDA

H. Ibrahim, H. Khaled, Noha A. Seada, H. Faheem
{"title":"Parallel Dense Binary Stereo Matching Using CUDA","authors":"H. Ibrahim, H. Khaled, Noha A. Seada, H. Faheem","doi":"10.1109/ICCES51560.2020.9334591","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of dense stereo matching from two rectified images without prior information about the structure of the scene. CUDA is proposed to exploit the data independence inherently present in local stereo matching to handle the accuracy-time trade-off. To address edge fattening, the parallel implementation utilizes an outstanding aggregation technique that is followed by a hybrid matching metric which is proved to enhance the matching accuracy. By porting the whole pipeline to the GPU, a speedup ranging from 34x to 108x is achieved without compromising the accuracy of the resulting disparity map. The Middlebury benchmark and the latest dataset are used to evaluate the results.","PeriodicalId":247183,"journal":{"name":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES51560.2020.9334591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper addresses the problem of dense stereo matching from two rectified images without prior information about the structure of the scene. CUDA is proposed to exploit the data independence inherently present in local stereo matching to handle the accuracy-time trade-off. To address edge fattening, the parallel implementation utilizes an outstanding aggregation technique that is followed by a hybrid matching metric which is proved to enhance the matching accuracy. By porting the whole pipeline to the GPU, a speedup ranging from 34x to 108x is achieved without compromising the accuracy of the resulting disparity map. The Middlebury benchmark and the latest dataset are used to evaluate the results.
基于CUDA的并行密集二值立体匹配
本文解决了在没有先验场景结构信息的情况下,对两幅校正后的图像进行密集立体匹配的问题。提出利用局部立体匹配固有的数据独立性来处理精度与时间的权衡。为了解决边缘增肥问题,并行实现利用了一种出色的聚合技术,然后是混合匹配度量,该度量被证明可以提高匹配精度。通过将整个管道移植到GPU,可以实现从34倍到108倍的加速,而不会影响所得视差图的准确性。米德尔伯里基准和最新数据集用于评估结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信