A comparative study of maximum power point tracking algorithms for PV arrays

Nathan Chris Swanepoel, C. G. Richards, A. Nnachi, P. Ehlers
{"title":"A comparative study of maximum power point tracking algorithms for PV arrays","authors":"Nathan Chris Swanepoel, C. G. Richards, A. Nnachi, P. Ehlers","doi":"10.1109/ENERGYCon48941.2020.9236562","DOIUrl":null,"url":null,"abstract":"Renewable energy sources like the sun have great potential to change the energy sector. Photovoltaic arrays are required to harness this energy; however, obtaining maximum power from the arrays has always been a challenge. Several authors have proposed different maximum power tracking (MPPT) algorithms. This paper presents a comparative study between the Incremental Conductance and Perturb & Observe MPPT to find the most efficient and effective algorithm at any irradiance and temperature. Simulation and experimentation were conducted with results analyzed and compared. From the analysis, the general observation emerges that the Incremental conductance algorithm is the best performing.","PeriodicalId":156687,"journal":{"name":"2020 6th IEEE International Energy Conference (ENERGYCon)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th IEEE International Energy Conference (ENERGYCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYCon48941.2020.9236562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Renewable energy sources like the sun have great potential to change the energy sector. Photovoltaic arrays are required to harness this energy; however, obtaining maximum power from the arrays has always been a challenge. Several authors have proposed different maximum power tracking (MPPT) algorithms. This paper presents a comparative study between the Incremental Conductance and Perturb & Observe MPPT to find the most efficient and effective algorithm at any irradiance and temperature. Simulation and experimentation were conducted with results analyzed and compared. From the analysis, the general observation emerges that the Incremental conductance algorithm is the best performing.
光伏阵列最大功率点跟踪算法的比较研究
像太阳这样的可再生能源具有改变能源部门的巨大潜力。需要光伏阵列来利用这种能量;然而,从阵列中获得最大的功率一直是一个挑战。一些作者提出了不同的最大功率跟踪(MPPT)算法。本文对增量电导法和扰动观测法进行了比较研究,以找出在任意辐照度和温度下最有效的算法。进行了仿真和实验,并对结果进行了分析比较。从分析中可以看出,电导增量算法是性能最好的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信