High-Quality 0.5mm Isotropic fMRI: Random Matrix Theory Meets Physics-Driven Deep Learning

Ö. Demirel, S. Moeller, L. Vizioli, Burhaneddin Yaman, Logan T Dowdle, E. Yacoub, K. Uğurbil, M. Akçakaya
{"title":"High-Quality 0.5mm Isotropic fMRI: Random Matrix Theory Meets Physics-Driven Deep Learning","authors":"Ö. Demirel, S. Moeller, L. Vizioli, Burhaneddin Yaman, Logan T Dowdle, E. Yacoub, K. Uğurbil, M. Akçakaya","doi":"10.1109/NER52421.2023.10123799","DOIUrl":null,"url":null,"abstract":"Submillimeter fMRI plays a vital role in studying the brain function at the mesoscale level, allowing investigation of functional activity in small cortical structures. However, such resolutions require extreme trade-offs between SNR, spatio-temporal resolution and coverage leading to numerous challenges. Therefore, interpretable locally low-rank denoising methods based on random matrix theory have been proposed and built into fMRI pipelines, but they require well-characterized noise distributions on reconstructed images, which hinders the use of emerging physics-driven deep learning reconstructions. In this work, we re-envision the conventional fMRI computational imaging pipeline to an alternative where denoising is performed prior to reconstruction. This allows for a synergistic combination of random matrix theory based thermal noise suppression and physics-driven deep learning re-construction, enabling high-quality 0.5mm isotropic functional MRI. Our results show that the proposed strategy improves on denoising or physics-driven deep learning reconstruction alone, with better delineation of brain structures, higher tSNR particularly in mid-brain areas and the largest expected extent of activation in GLM-derived t-maps.","PeriodicalId":201841,"journal":{"name":"2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER52421.2023.10123799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Submillimeter fMRI plays a vital role in studying the brain function at the mesoscale level, allowing investigation of functional activity in small cortical structures. However, such resolutions require extreme trade-offs between SNR, spatio-temporal resolution and coverage leading to numerous challenges. Therefore, interpretable locally low-rank denoising methods based on random matrix theory have been proposed and built into fMRI pipelines, but they require well-characterized noise distributions on reconstructed images, which hinders the use of emerging physics-driven deep learning reconstructions. In this work, we re-envision the conventional fMRI computational imaging pipeline to an alternative where denoising is performed prior to reconstruction. This allows for a synergistic combination of random matrix theory based thermal noise suppression and physics-driven deep learning re-construction, enabling high-quality 0.5mm isotropic functional MRI. Our results show that the proposed strategy improves on denoising or physics-driven deep learning reconstruction alone, with better delineation of brain structures, higher tSNR particularly in mid-brain areas and the largest expected extent of activation in GLM-derived t-maps.
高质量的0.5mm各向同性fMRI:随机矩阵理论满足物理驱动的深度学习
亚毫米功能磁共振成像在中尺度水平研究脑功能方面起着至关重要的作用,可以研究小皮层结构的功能活动。然而,这种分辨率需要在信噪比、时空分辨率和覆盖范围之间进行极端权衡,从而带来许多挑战。因此,基于随机矩阵理论的可解释局部低秩去噪方法已被提出并构建到fMRI管道中,但它们需要重构图像上具有良好特征的噪声分布,这阻碍了新兴的物理驱动深度学习重建的使用。在这项工作中,我们重新设想了传统的fMRI计算成像管道,在重建之前进行去噪。这使得基于随机矩阵理论的热噪声抑制和物理驱动的深度学习重建的协同结合成为可能,从而实现高质量的0.5mm各向同性功能MRI。我们的研究结果表明,所提出的策略在去噪或物理驱动的深度学习重建方面有所改进,能够更好地描绘大脑结构,特别是在中脑区域具有更高的tSNR,并且在glm衍生的t-map中具有最大的预期激活程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信