Ö. Demirel, S. Moeller, L. Vizioli, Burhaneddin Yaman, Logan T Dowdle, E. Yacoub, K. Uğurbil, M. Akçakaya
{"title":"High-Quality 0.5mm Isotropic fMRI: Random Matrix Theory Meets Physics-Driven Deep Learning","authors":"Ö. Demirel, S. Moeller, L. Vizioli, Burhaneddin Yaman, Logan T Dowdle, E. Yacoub, K. Uğurbil, M. Akçakaya","doi":"10.1109/NER52421.2023.10123799","DOIUrl":null,"url":null,"abstract":"Submillimeter fMRI plays a vital role in studying the brain function at the mesoscale level, allowing investigation of functional activity in small cortical structures. However, such resolutions require extreme trade-offs between SNR, spatio-temporal resolution and coverage leading to numerous challenges. Therefore, interpretable locally low-rank denoising methods based on random matrix theory have been proposed and built into fMRI pipelines, but they require well-characterized noise distributions on reconstructed images, which hinders the use of emerging physics-driven deep learning reconstructions. In this work, we re-envision the conventional fMRI computational imaging pipeline to an alternative where denoising is performed prior to reconstruction. This allows for a synergistic combination of random matrix theory based thermal noise suppression and physics-driven deep learning re-construction, enabling high-quality 0.5mm isotropic functional MRI. Our results show that the proposed strategy improves on denoising or physics-driven deep learning reconstruction alone, with better delineation of brain structures, higher tSNR particularly in mid-brain areas and the largest expected extent of activation in GLM-derived t-maps.","PeriodicalId":201841,"journal":{"name":"2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER52421.2023.10123799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Submillimeter fMRI plays a vital role in studying the brain function at the mesoscale level, allowing investigation of functional activity in small cortical structures. However, such resolutions require extreme trade-offs between SNR, spatio-temporal resolution and coverage leading to numerous challenges. Therefore, interpretable locally low-rank denoising methods based on random matrix theory have been proposed and built into fMRI pipelines, but they require well-characterized noise distributions on reconstructed images, which hinders the use of emerging physics-driven deep learning reconstructions. In this work, we re-envision the conventional fMRI computational imaging pipeline to an alternative where denoising is performed prior to reconstruction. This allows for a synergistic combination of random matrix theory based thermal noise suppression and physics-driven deep learning re-construction, enabling high-quality 0.5mm isotropic functional MRI. Our results show that the proposed strategy improves on denoising or physics-driven deep learning reconstruction alone, with better delineation of brain structures, higher tSNR particularly in mid-brain areas and the largest expected extent of activation in GLM-derived t-maps.