The class of all 3-valued natural conditional variants of RM3 that are Plumwood Algebras

J. Blanco, Sandra M. López, Marcos M. Recio
{"title":"The class of all 3-valued natural conditional variants of RM3 that are Plumwood Algebras","authors":"J. Blanco, Sandra M. López, Marcos M. Recio","doi":"10.26686/ajl.v29i2.8285","DOIUrl":null,"url":null,"abstract":"Valerie Plumwood introduced in \"Some false laws of logic\" a series of arguments on how the rules Exported Syllogism, Disjunctive Syllogism, Commutation, and Exportation are not acceptable. Based on this we define the class of Plumwood algebras - logical matrices that do not verify any of these theses. Afterwards we provide conditional variants of the characteristic matrix of the logic RM3 that are also Plumwood algebras. These matrices are given an axiomatization based on First Degree Entailment and are endowed with Belnap-Dunn Semantics. Finally we provide results of Soundness and Completeness in the strong sense for each of the defined variants.","PeriodicalId":367849,"journal":{"name":"The Australasian Journal of Logic","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Australasian Journal of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26686/ajl.v29i2.8285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Valerie Plumwood introduced in "Some false laws of logic" a series of arguments on how the rules Exported Syllogism, Disjunctive Syllogism, Commutation, and Exportation are not acceptable. Based on this we define the class of Plumwood algebras - logical matrices that do not verify any of these theses. Afterwards we provide conditional variants of the characteristic matrix of the logic RM3 that are also Plumwood algebras. These matrices are given an axiomatization based on First Degree Entailment and are endowed with Belnap-Dunn Semantics. Finally we provide results of Soundness and Completeness in the strong sense for each of the defined variants.
Plumwood代数中RM3的所有3值自然条件变体的类
Valerie Plumwood在《一些错误的逻辑法则》中提出了一系列关于导出三段论、析取三段论、交换论和导出论规则不可接受的论证。在此基础上,我们定义了一类普鲁姆代数——不验证上述任何命题的逻辑矩阵。然后,我们提供了逻辑RM3的特征矩阵的条件变体,它们也是Plumwood代数。在一级蕴涵的基础上给出了这些矩阵的公理化,并赋予了它们Belnap-Dunn语义。最后给出了每个已定义变量的强意义上的健全性和完备性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信