A greedy algorithm for decentralized Bayesian detection with feedback

Weiqiang Dong, Moshe Kam
{"title":"A greedy algorithm for decentralized Bayesian detection with feedback","authors":"Weiqiang Dong, Moshe Kam","doi":"10.1109/SARNOF.2016.7846756","DOIUrl":null,"url":null,"abstract":"We consider a decentralized binary detection architecture comprised of n local detectors (LDs) communicating their decisions to a Data Fusion Center (DFC). Each local detector (LD) declares preference for one of two hypotheses (H<inf>0</inf> or H<inf>1</inf>) and transmits it to the DFC. The decision of the k<sup>th</sup> LD at time step t is u<sup>t</sup><inf>k</inf>. The DFC develops a global preference u<sup>t</sup><inf>0</inf> for one of hypotheses based on the vector of local decisions U<sup>t</sup> while minimizing a Bayesian cost. The input to the k<sup>th</sup> LD at time step t is the observation y<sup>t</sup><inf>k</inf> collected from the surveyed environment, and the previous global decision u<sup>t−1</sup><inf>0</inf>. Alhakeem and Varshney developed a person-by-person optimal (PBPO) solution to this problem, namely a PBPO procedure to calculate the global fusion rule and the local decision rules. However, their solution requires that at each time step 2<sup>n</sup> fusion rule equations and 2n local threshold equations be solved simultaneously. In this paper we suggest a suboptimal solution to the problem, based on independent local minimizations of similar Bayesian cost by each LD and by the DFC. To assess the cost of decentralization, the performance of this solution is compared to that of an architecture that processes all observations in one central location.","PeriodicalId":137948,"journal":{"name":"2016 IEEE 37th Sarnoff Symposium","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 37th Sarnoff Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SARNOF.2016.7846756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a decentralized binary detection architecture comprised of n local detectors (LDs) communicating their decisions to a Data Fusion Center (DFC). Each local detector (LD) declares preference for one of two hypotheses (H0 or H1) and transmits it to the DFC. The decision of the kth LD at time step t is utk. The DFC develops a global preference ut0 for one of hypotheses based on the vector of local decisions Ut while minimizing a Bayesian cost. The input to the kth LD at time step t is the observation ytk collected from the surveyed environment, and the previous global decision ut−10. Alhakeem and Varshney developed a person-by-person optimal (PBPO) solution to this problem, namely a PBPO procedure to calculate the global fusion rule and the local decision rules. However, their solution requires that at each time step 2n fusion rule equations and 2n local threshold equations be solved simultaneously. In this paper we suggest a suboptimal solution to the problem, based on independent local minimizations of similar Bayesian cost by each LD and by the DFC. To assess the cost of decentralization, the performance of this solution is compared to that of an architecture that processes all observations in one central location.
带反馈的分散贝叶斯检测贪心算法
我们考虑一个分散的二进制检测架构,由n个本地检测器(ld)组成,将它们的决定传递给数据融合中心(DFC)。每个本地检测器(LD)声明对两个假设(H0或H1)中的一个的偏好,并将其传输到DFC。在时间步长t处的第k个LD的决定是错误的。DFC在最小化贝叶斯成本的同时,根据局部决策向量Ut为其中一个假设开发一个全局偏好ut0。在时间步长t的第k个LD的输入是从调查环境中收集的观测值ytk,以及之前的全局决策ut−10。Alhakeem和Varshney针对该问题提出了一种人对人最优(PBPO)解决方案,即计算全局融合规则和局部决策规则的PBPO程序。但是,它们的求解需要在每个时间步同时求解2n个融合规则方程和2n个局部阈值方程。在本文中,我们提出了一个次优解的问题,基于独立的局部最小化相似的贝叶斯成本的每个LD和DFC。为了评估去中心化的成本,将此解决方案的性能与在一个中心位置处理所有观察结果的体系结构的性能进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信