Weiyu Xu, Jian-Feng Cai, K. Mishra, Myung Cho, A. Kruger
{"title":"Precise semidefinite programming formulation of atomic norm minimization for recovering d-dimensional (D ≥ 2) off-the-grid frequencies","authors":"Weiyu Xu, Jian-Feng Cai, K. Mishra, Myung Cho, A. Kruger","doi":"10.1109/ITA.2014.6804267","DOIUrl":null,"url":null,"abstract":"Recent research in off-the-grid compressed sensing (CS) has demonstrated that, under certain conditions, one can successfully recover a spectrally sparse signal from a few time-domain samples even though the dictionary is continuous. In particular, atomic norm minimization was proposed in [1] to recover 1-dimensional spectrally sparse signal. However, in spite of existing research efforts [2], it was still an open problem how to formulate an equivalent positive semidefinite program for atomic norm minimization in recovering signals with d-dimensional (d ≥ 2) off-the-grid frequencies. In this paper, we settle this problem by proposing equivalent semidefinite programming formulations of atomic norm minimization to recover signals with d-dimensional (d ≥ 2) off-the-grid frequencies.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71
Abstract
Recent research in off-the-grid compressed sensing (CS) has demonstrated that, under certain conditions, one can successfully recover a spectrally sparse signal from a few time-domain samples even though the dictionary is continuous. In particular, atomic norm minimization was proposed in [1] to recover 1-dimensional spectrally sparse signal. However, in spite of existing research efforts [2], it was still an open problem how to formulate an equivalent positive semidefinite program for atomic norm minimization in recovering signals with d-dimensional (d ≥ 2) off-the-grid frequencies. In this paper, we settle this problem by proposing equivalent semidefinite programming formulations of atomic norm minimization to recover signals with d-dimensional (d ≥ 2) off-the-grid frequencies.