Video anomaly detection based on wake motion descriptors and perspective grids

Roberto Leyva, Victor Sanchez, Chang-Tsun Li
{"title":"Video anomaly detection based on wake motion descriptors and perspective grids","authors":"Roberto Leyva, Victor Sanchez, Chang-Tsun Li","doi":"10.1109/WIFS.2014.7084329","DOIUrl":null,"url":null,"abstract":"This paper proposes a video anomaly detection method based on wake motion descriptors. The method analyses the motion characteristics of the video data, on a video volume-by-video volume basis, by computing the wake left behind by moving objects in the scene. It then probabilistically identifies those never previously seen motion patterns in order to detect anomalies. The method also considers the perspective of the scene to compensate for the relative change in an object's size introduced by the camera's view angle. To this end, a perspective grid is proposed to define the size of video volumes for anomaly detection. Evaluation results against several state-of- the-art methods show that the proposed method attains high detection accuracies and competitive computational time.","PeriodicalId":220523,"journal":{"name":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2014.7084329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper proposes a video anomaly detection method based on wake motion descriptors. The method analyses the motion characteristics of the video data, on a video volume-by-video volume basis, by computing the wake left behind by moving objects in the scene. It then probabilistically identifies those never previously seen motion patterns in order to detect anomalies. The method also considers the perspective of the scene to compensate for the relative change in an object's size introduced by the camera's view angle. To this end, a perspective grid is proposed to define the size of video volumes for anomaly detection. Evaluation results against several state-of- the-art methods show that the proposed method attains high detection accuracies and competitive computational time.
基于尾流运动描述符和透视网格的视频异常检测
提出了一种基于尾流运动描述子的视频异常检测方法。该方法通过计算场景中运动物体留下的尾迹,在逐视频量的基础上分析视频数据的运动特征。然后,它会概率地识别那些以前从未见过的运动模式,以检测异常情况。该方法还考虑了场景的视角,以补偿由相机视角引入的物体尺寸的相对变化。为此,提出了一个透视网格来定义异常检测视频卷的大小。对几种最新方法的评估结果表明,该方法具有较高的检测精度和较短的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信