BREAST CANCER DETECTION USING MAMMOGRAM FEATURES USING RANDOM FOREST ALGORITHM

{"title":"BREAST CANCER DETECTION USING MAMMOGRAM FEATURES USING RANDOM FOREST ALGORITHM","authors":"","doi":"10.48047/ijarst/v10/i11/02","DOIUrl":null,"url":null,"abstract":"Breast Cancer is one of the most dangerous diseases for women. This cancer\noccurs when some breast cells begin to grow abnormally. Machine learning is the\nsubfield of computer science that studies programs that generalize from past\nexperience. This project looks at classification, where an algorithm tries to predict\nthe label for a sample. The machine learning algorithm takes many of these\nsamples, called the training set, and builds an internal model. This built model is\nused to classify and predict the data. There are two classes, benign and malignant.\nRandom Forest classifier is used to predict whether the cancer is benign or\nmalignant. Training and testing of the model are done by Wisconsin Diagnosis\nBreast Cancer dataset.","PeriodicalId":167095,"journal":{"name":"INTERNATIONAL JOURNAL FOR ADVANCED RESEARCH IN SCIENCE & TECHNOLOGY","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL FOR ADVANCED RESEARCH IN SCIENCE & TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48047/ijarst/v10/i11/02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Breast Cancer is one of the most dangerous diseases for women. This cancer occurs when some breast cells begin to grow abnormally. Machine learning is the subfield of computer science that studies programs that generalize from past experience. This project looks at classification, where an algorithm tries to predict the label for a sample. The machine learning algorithm takes many of these samples, called the training set, and builds an internal model. This built model is used to classify and predict the data. There are two classes, benign and malignant. Random Forest classifier is used to predict whether the cancer is benign or malignant. Training and testing of the model are done by Wisconsin Diagnosis Breast Cancer dataset.
基于随机森林算法的乳房x线影像特征乳腺癌检测
乳腺癌是女性最危险的疾病之一。当一些乳腺细胞开始异常生长时,就会发生这种癌症。机器学习是计算机科学的一个子领域,研究从过去的经验中归纳出来的程序。这个项目着眼于分类,其中一个算法试图预测样本的标签。机器学习算法取许多这样的样本,称为训练集,并建立一个内部模型。该模型用于对数据进行分类和预测。有良性和恶性两类。随机森林分类器用于预测肿瘤是良性还是恶性。该模型的训练和测试由威斯康星诊断乳腺癌数据集完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信