Using Graphlet Spectrograms for Temporal Pattern Analysis of Virus-Research Collaboration Networks

D. Floros, Tiancheng Liu, N. Pitsianis, Xiaobai Sun
{"title":"Using Graphlet Spectrograms for Temporal Pattern Analysis of Virus-Research Collaboration Networks","authors":"D. Floros, Tiancheng Liu, N. Pitsianis, Xiaobai Sun","doi":"10.1109/HPEC43674.2020.9286161","DOIUrl":null,"url":null,"abstract":"We introduce a new method for temporal pattern analysis of scientific collaboration networks. We investigate in particular virus research activities through five epidemic or pandemic outbreaks in the recent two decades and in the ongoing pandemic with COVID-19. Our method embodies two innovative components. The first is a simple model of temporal collaboration networks with time segmented in publication time and convolved in citation history, to effectively capture and accommodate collaboration activities at mixed time scales. The second component is the novel use of graphlets to encode topological structures and to detect change and persistence in collaboration activities over time. We discover in particular two unique and universal roles of bi-fork graphlet in (1) identifying bridges among triangle clusters and (2) quantifying grassroots as the backbone of every collaboration network. We present a number of intriguing patterns and findings about the virus-research activities.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce a new method for temporal pattern analysis of scientific collaboration networks. We investigate in particular virus research activities through five epidemic or pandemic outbreaks in the recent two decades and in the ongoing pandemic with COVID-19. Our method embodies two innovative components. The first is a simple model of temporal collaboration networks with time segmented in publication time and convolved in citation history, to effectively capture and accommodate collaboration activities at mixed time scales. The second component is the novel use of graphlets to encode topological structures and to detect change and persistence in collaboration activities over time. We discover in particular two unique and universal roles of bi-fork graphlet in (1) identifying bridges among triangle clusters and (2) quantifying grassroots as the backbone of every collaboration network. We present a number of intriguing patterns and findings about the virus-research activities.
用石墨烯谱图分析病毒研究合作网络的时间模式
提出了一种科学协作网络时间模式分析的新方法。我们通过最近二十年的五次流行病或大流行疫情以及正在进行的COVID-19大流行调查了特定的病毒研究活动。我们的方法包含两个创新部分。首先是一个简单的时间协作网络模型,该模型在出版时间上进行了时间分割,在引用历史上进行了卷积,以有效地捕捉和适应混合时间尺度上的协作活动。第二个组件是对石墨烯的新颖使用,用于对拓扑结构进行编码,并检测随时间变化的协作活动中的变化和持久性。我们特别发现了双叉石墨烯的两个独特而普遍的作用:(1)识别三角集群之间的桥梁;(2)量化基层作为每个协作网络的骨干。我们提出了关于病毒研究活动的一些有趣的模式和发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信