A. Gallegos-Muñoz, Fabián Luna-Cabrera, M. Picón-Núñez, F. Elizalde-Blancas, J. M. Belman-Flores
{"title":"Exhaust Gas Heat Recovery for an ORC: A Case Study","authors":"A. Gallegos-Muñoz, Fabián Luna-Cabrera, M. Picón-Núñez, F. Elizalde-Blancas, J. M. Belman-Flores","doi":"10.5772/INTECHOPEN.86075","DOIUrl":null,"url":null,"abstract":"This work aims at developing a heat exchanger (HEX) sizing approach considering the need to maximize the heat recovery within the limitations of pressure drop and space. The application consists in the recovery of the energy contained in exhaust gases coming from an internal combustion engine (ICE). Two heat exchanger geometries are selected as case studies. The design approach involves the application of design of experiments (DOE) techniques and computational fluid dynamics (CFD) simulations. DOE techniques are used to observe the influence of some selected parameters (factors) in the design of the heat exchangers, and CFD simulations are carried out to determine the performance of the heat exchanger. The information obtained is used to determine local Nusselt number correlations that are used for the design of the heat exchangers.","PeriodicalId":321588,"journal":{"name":"Heat and Mass Transfer - Advances in Science and Technology Applications","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat and Mass Transfer - Advances in Science and Technology Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.86075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work aims at developing a heat exchanger (HEX) sizing approach considering the need to maximize the heat recovery within the limitations of pressure drop and space. The application consists in the recovery of the energy contained in exhaust gases coming from an internal combustion engine (ICE). Two heat exchanger geometries are selected as case studies. The design approach involves the application of design of experiments (DOE) techniques and computational fluid dynamics (CFD) simulations. DOE techniques are used to observe the influence of some selected parameters (factors) in the design of the heat exchangers, and CFD simulations are carried out to determine the performance of the heat exchanger. The information obtained is used to determine local Nusselt number correlations that are used for the design of the heat exchangers.