{"title":"Power Quality Knowledge Application for Low Voltage Ride Through Studies of Wind Turbine Generator","authors":"Cheng Chen, R. Oliveira, M. Bollen, A. Bagheri","doi":"10.1109/ISGTEurope.2019.8905668","DOIUrl":null,"url":null,"abstract":"Low voltage ride through (LVRT) of wind turbines is an important grid integration issue and the subject of many studies. However, in many such studies, the voltage dip waveforms used to test the performance of LVRT methods are not the one that can occur at the terminal of a wind turbine in reality. This paper provides a critical review of existing works and summarizes the power quality knowledge needed to study LVRT. Characteristics of voltage dips at the terminals of a wind turbine generator (WTG) will be analyzed based on realistic wind farm topology and transformer winding configuration. The impact of collection system transformer winding configuration on low voltage ride through of DFIG is revealed for the first time. Also, the impact of phase angle jump (PAJ) is shown in simulation. The changes of PAJ and point on wave (POW) characteristics in propagation between point of common connection (PCC) and terminal are analyzed to inspire further works. These issues are important but widely neglected by current works.","PeriodicalId":305933,"journal":{"name":"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","volume":"116 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2019.8905668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Low voltage ride through (LVRT) of wind turbines is an important grid integration issue and the subject of many studies. However, in many such studies, the voltage dip waveforms used to test the performance of LVRT methods are not the one that can occur at the terminal of a wind turbine in reality. This paper provides a critical review of existing works and summarizes the power quality knowledge needed to study LVRT. Characteristics of voltage dips at the terminals of a wind turbine generator (WTG) will be analyzed based on realistic wind farm topology and transformer winding configuration. The impact of collection system transformer winding configuration on low voltage ride through of DFIG is revealed for the first time. Also, the impact of phase angle jump (PAJ) is shown in simulation. The changes of PAJ and point on wave (POW) characteristics in propagation between point of common connection (PCC) and terminal are analyzed to inspire further works. These issues are important but widely neglected by current works.