Image Fusion Through Linear Embeddings

Oguzhan Ulucan, Diclehan Karakaya, Mehmet Türkan
{"title":"Image Fusion Through Linear Embeddings","authors":"Oguzhan Ulucan, Diclehan Karakaya, Mehmet Türkan","doi":"10.1109/ICIP42928.2021.9506168","DOIUrl":null,"url":null,"abstract":"This paper proposes an effective technique for multi-exposure image fusion and visible-infrared image fusion problems. Multi-exposure fusion algorithms generally extract faulty weight maps when the input stack contains multiple and/or severely over-exposed images. To overcome this issue, an alternative method is developed for weight map characterization and refinement in addition to the perspectives of linear embeddings of images and adaptive morphological masking. This framework has then been extended to the visible and infrared image fusion problem. The comprehensive experimental comparisons demonstrate that the proposed algorithm significantly enhances the fused image quality both statistically and visually.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes an effective technique for multi-exposure image fusion and visible-infrared image fusion problems. Multi-exposure fusion algorithms generally extract faulty weight maps when the input stack contains multiple and/or severely over-exposed images. To overcome this issue, an alternative method is developed for weight map characterization and refinement in addition to the perspectives of linear embeddings of images and adaptive morphological masking. This framework has then been extended to the visible and infrared image fusion problem. The comprehensive experimental comparisons demonstrate that the proposed algorithm significantly enhances the fused image quality both statistically and visually.
通过线性嵌入的图像融合
提出了一种有效的多曝光图像融合和可见-红外图像融合技术。当输入堆栈包含多个和/或严重过度曝光的图像时,多曝光融合算法通常会提取错误的权重图。为了克服这一问题,除了图像的线性嵌入和自适应形态掩蔽的视角外,还开发了一种替代方法用于权重图的表征和细化。然后将该框架推广到可见光和红外图像融合问题。综合实验对比表明,该算法在统计和视觉上都显著提高了融合图像的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信