Improved Topic Representations of Medical Documents to Assist COVID-19 Literature Exploration

Yulia Otmakhova, K. Verspoor, Timothy Baldwin, Simon Suster, Jey Han Lau
{"title":"Improved Topic Representations of Medical Documents to Assist COVID-19 Literature Exploration","authors":"Yulia Otmakhova, K. Verspoor, Timothy Baldwin, Simon Suster, Jey Han Lau","doi":"10.18653/v1/2020.nlpcovid19-2.12","DOIUrl":null,"url":null,"abstract":"Efficient discovery and exploration of biomedical literature has grown in importance in the context of the COVID-19 pandemic, and topic-based methods such as latent Dirichlet allocation (LDA) are a useful tool for this purpose. In this study we compare traditional topic models based on word tokens with topic models based on medical concepts, and pro-pose several ways to improve topic coherence and specificity.","PeriodicalId":131251,"journal":{"name":"Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.nlpcovid19-2.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Efficient discovery and exploration of biomedical literature has grown in importance in the context of the COVID-19 pandemic, and topic-based methods such as latent Dirichlet allocation (LDA) are a useful tool for this purpose. In this study we compare traditional topic models based on word tokens with topic models based on medical concepts, and pro-pose several ways to improve topic coherence and specificity.
改进医学文献主题表示,辅助COVID-19文献检索
在COVID-19大流行的背景下,高效发现和探索生物医学文献变得越来越重要,基于主题的方法(如潜在狄利let分配(LDA))是实现这一目标的有用工具。在本研究中,我们比较了基于词标记的传统主题模型和基于医学概念的主题模型,并提出了几种提高主题一致性和专一性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信