Comparing Extant Story Classifiers: Results & New Directions

Joshua D. Eisenberg, W. V. Yarlott, Mark A. Finlayson
{"title":"Comparing Extant Story Classifiers: Results & New Directions","authors":"Joshua D. Eisenberg, W. V. Yarlott, Mark A. Finlayson","doi":"10.4230/OASIcs.CMN.2016.6","DOIUrl":null,"url":null,"abstract":"Having access to a large set of stories is a necessary first step for robust and wide-ranging computational narrative modeling; happily, language data - including stories - are increasingly available in electronic form. Unhappily, the process of automatically separating stories from other forms of written discourse is not straightforward, and has resulted in a data collection bottleneck. Therefore researchers have sought to develop reliable, robust automatic algorithms for identifying story text mixed with other non-story text. In this paper we report on the reimplementation and experimental comparison of the two approaches to this task: Gordon's unigram classifier, and Corman's semantic triplet classifier. We cross-analyze their performance on both Gordon's and Corman's corpora, and discuss similarities, differences, and gaps in the performance of these classifiers, and point the way forward to improving their approaches.","PeriodicalId":311534,"journal":{"name":"Workshop on Computational Models of Narrative","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Computational Models of Narrative","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.CMN.2016.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Having access to a large set of stories is a necessary first step for robust and wide-ranging computational narrative modeling; happily, language data - including stories - are increasingly available in electronic form. Unhappily, the process of automatically separating stories from other forms of written discourse is not straightforward, and has resulted in a data collection bottleneck. Therefore researchers have sought to develop reliable, robust automatic algorithms for identifying story text mixed with other non-story text. In this paper we report on the reimplementation and experimental comparison of the two approaches to this task: Gordon's unigram classifier, and Corman's semantic triplet classifier. We cross-analyze their performance on both Gordon's and Corman's corpora, and discuss similarities, differences, and gaps in the performance of these classifiers, and point the way forward to improving their approaches.
比较现有故事分类器:结果与新方向
拥有大量的故事是构建强大且广泛的计算叙事模型的第一步;令人高兴的是,语言数据——包括故事——越来越多地以电子形式出现。不幸的是,自动将故事从其他形式的书面话语中分离出来的过程并不简单,并导致了数据收集的瓶颈。因此,研究人员一直在寻求开发可靠的、健壮的自动算法来识别混合在其他非故事文本中的故事文本。在本文中,我们报告了两种方法的重新实现和实验比较:Gordon的一元分类器和Corman的语义三元分类器。我们交叉分析了它们在Gordon和Corman的语料库上的表现,并讨论了这些分类器在性能上的异同和差距,并指出了改进它们的方法的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信