The effect of feature reduction techniques on diagnosis of diabetes

H. Akan, U. Demirok, N. Kiliç
{"title":"The effect of feature reduction techniques on diagnosis of diabetes","authors":"H. Akan, U. Demirok, N. Kiliç","doi":"10.1109/SIU.2012.6204687","DOIUrl":null,"url":null,"abstract":"In this study, Bayesian and, Decision Trees classifiers are used for the automatic diagnosis of the diabetes disease. 17 attributes of the diabetics has been reduced to 4 attributes using principal component analysis and sequential forward selection algorithm. The performances of the classifiers obtained from the use of the dimension reduction techniques are compared. Thus, dimension reduction methods to examine the positive effects on both the results and is intended to reduce the workload of the machine learning. End of the study, it has been seen that Decision Trees Algorithm provides the highest performance criterion and Principle Component Analysis gives the best classifying results. The study produces the importance of the dimension reduction techniques to process the big demensional datas.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, Bayesian and, Decision Trees classifiers are used for the automatic diagnosis of the diabetes disease. 17 attributes of the diabetics has been reduced to 4 attributes using principal component analysis and sequential forward selection algorithm. The performances of the classifiers obtained from the use of the dimension reduction techniques are compared. Thus, dimension reduction methods to examine the positive effects on both the results and is intended to reduce the workload of the machine learning. End of the study, it has been seen that Decision Trees Algorithm provides the highest performance criterion and Principle Component Analysis gives the best classifying results. The study produces the importance of the dimension reduction techniques to process the big demensional datas.
特征约简技术在糖尿病诊断中的作用
在本研究中,贝叶斯和决策树分类器被用于糖尿病疾病的自动诊断。利用主成分分析和序贯正向选择算法,将糖尿病患者的17个属性简化为4个属性。比较了使用降维技术得到的分类器的性能。因此,降维方法对两种结果都有积极的影响,旨在减少机器学习的工作量。在研究结束时,我们可以看到决策树算法提供了最高的性能标准,而主成分分析给出了最好的分类结果。研究表明了降维技术在处理大维数据中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信