Daniel Eiwen, G. Taubock, F. Hlawatsch, H. Feichtinger
{"title":"Group sparsity methods for compressive channel estimation in doubly dispersive multicarrier systems","authors":"Daniel Eiwen, G. Taubock, F. Hlawatsch, H. Feichtinger","doi":"10.1109/SPAWC.2010.5670986","DOIUrl":null,"url":null,"abstract":"We propose advanced compressive estimators of doubly dispersive channels within multicarrier communication systems (including classical OFDM systems). The performance of compressive channel estimation has been shown to be limited by leakage components impairing the channel's effective delay-Doppler sparsity. We demonstrate a group sparse structure of these leakage components and apply recently proposed recovery techniques for group sparse signals. We also present a basis optimization method for enhancing group sparsity. Statistical knowledge about the channel can be incorporated in the basis optimization if available. The proposed estimators outperform existing compressive estimators with respect to estimation accuracy and, in one instance, also computational complexity.","PeriodicalId":436215,"journal":{"name":"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2010.5670986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
We propose advanced compressive estimators of doubly dispersive channels within multicarrier communication systems (including classical OFDM systems). The performance of compressive channel estimation has been shown to be limited by leakage components impairing the channel's effective delay-Doppler sparsity. We demonstrate a group sparse structure of these leakage components and apply recently proposed recovery techniques for group sparse signals. We also present a basis optimization method for enhancing group sparsity. Statistical knowledge about the channel can be incorporated in the basis optimization if available. The proposed estimators outperform existing compressive estimators with respect to estimation accuracy and, in one instance, also computational complexity.