An Advanced Weighted Evidence Combination Method for Multisensor Data Fusion in IoT

Nour El Imane Hamda, A. Hadjali, Mohand Lagha
{"title":"An Advanced Weighted Evidence Combination Method for Multisensor Data Fusion in IoT","authors":"Nour El Imane Hamda, A. Hadjali, Mohand Lagha","doi":"10.1109/DASA54658.2022.9765125","DOIUrl":null,"url":null,"abstract":"Dempster-Shafer theory is an essential tool for modelling and reasoning under uncertainty, and it is an effective approach for multisensor data fusion. It is extensively deployed in many fields such as fault diagnosis, image processing, pattern recognition, etc. However, Dempster’s combination rule is often subject to counter-intuitive results when the sources highly conflict; several methods have been proposed in the literature to solve this problem. In this paper, a weighted evidence combination method based on evidence distance, evidence angle, and information volume is proposed to overcome the shortcomings of the classical Dempster’s combination rule. To investigate the effectiveness and performance of the proposed method, a comparative study with different state of the art methods using both benchmark numerical example and Fault diagnosis application has been carried out.","PeriodicalId":231066,"journal":{"name":"2022 International Conference on Decision Aid Sciences and Applications (DASA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Decision Aid Sciences and Applications (DASA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASA54658.2022.9765125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Dempster-Shafer theory is an essential tool for modelling and reasoning under uncertainty, and it is an effective approach for multisensor data fusion. It is extensively deployed in many fields such as fault diagnosis, image processing, pattern recognition, etc. However, Dempster’s combination rule is often subject to counter-intuitive results when the sources highly conflict; several methods have been proposed in the literature to solve this problem. In this paper, a weighted evidence combination method based on evidence distance, evidence angle, and information volume is proposed to overcome the shortcomings of the classical Dempster’s combination rule. To investigate the effectiveness and performance of the proposed method, a comparative study with different state of the art methods using both benchmark numerical example and Fault diagnosis application has been carried out.
物联网多传感器数据融合的一种先进加权证据组合方法
Dempster-Shafer理论是不确定条件下建模和推理的重要工具,是多传感器数据融合的有效方法。它广泛应用于故障诊断、图像处理、模式识别等领域。然而,当来源高度冲突时,Dempster的组合规则往往会受到反直觉的结果;文献中提出了几种方法来解决这个问题。针对经典Dempster组合规则的不足,提出了一种基于证据距离、证据角度和信息量的加权证据组合方法。为了验证所提方法的有效性和性能,采用基准数值算例和故障诊断应用对不同的方法进行了比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信