{"title":"A hybrid MoM/FDTD approach for an efficient modeling of complex antennas on mobile platforms","authors":"W. Thiel, K. Sabet, L. Katehi","doi":"10.1109/EUMA.2003.341054","DOIUrl":null,"url":null,"abstract":"The use of a hybrid Method of Moments (MoM)/Finite Difference Time Domain (FDTD) method can be effective for solutions of electromagnetic propagation problems, which are intractable for single numerical methods. This paper presents a rigorous, hybrid full-wave analysis of effects pertinent to vehicular multi-antenna system performance for wireless communication applications. For a fast solution of such complex electromagnetic problems essential for an efficient design and optimization of high performance antennas under the influence of mobile platforms, MPI-based parallelization strategies are developed. Applications where the combined MoM/FDTD simulation of wire antennas mounted on a vehicle sheds light into the impact on the antenna performance are provided.","PeriodicalId":156210,"journal":{"name":"2003 33rd European Microwave Conference, 2003","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 33rd European Microwave Conference, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUMA.2003.341054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The use of a hybrid Method of Moments (MoM)/Finite Difference Time Domain (FDTD) method can be effective for solutions of electromagnetic propagation problems, which are intractable for single numerical methods. This paper presents a rigorous, hybrid full-wave analysis of effects pertinent to vehicular multi-antenna system performance for wireless communication applications. For a fast solution of such complex electromagnetic problems essential for an efficient design and optimization of high performance antennas under the influence of mobile platforms, MPI-based parallelization strategies are developed. Applications where the combined MoM/FDTD simulation of wire antennas mounted on a vehicle sheds light into the impact on the antenna performance are provided.