Handling Web Bias 2019: Chairs' Welcome and Workshop Summary

R. Baeza-Yates, Jeanna Neefe Matthews
{"title":"Handling Web Bias 2019: Chairs' Welcome and Workshop Summary","authors":"R. Baeza-Yates, Jeanna Neefe Matthews","doi":"10.1145/3328413.3328417","DOIUrl":null,"url":null,"abstract":"A key aspect of the Web Science conference is exploring the ethical challenges of technologies, data, algorithms, platforms, and people in the Web as well as detecting, preventing and predicting anomalies in web data including algorithmic and data biases. Handling Web Bias (HWB) is a new workshop focusing on best practices for identifying and handling web bias. Awareness of the problems of algorithmic and data bias has been growing but even with careful review of the algorithms and data sets, it may not be possible to delete all unwanted bias, particularly when systems learn from historical data that encodes cultural biases. This workshop will take a rich and cross-domain approach to this complicated problem, providing a venue for researchers to move beyond awareness of the problem of algorithmic and data bias to focus on practical strategies for handling it.","PeriodicalId":102426,"journal":{"name":"Companion Publication of the 10th ACM Conference on Web Science","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 10th ACM Conference on Web Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328413.3328417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A key aspect of the Web Science conference is exploring the ethical challenges of technologies, data, algorithms, platforms, and people in the Web as well as detecting, preventing and predicting anomalies in web data including algorithmic and data biases. Handling Web Bias (HWB) is a new workshop focusing on best practices for identifying and handling web bias. Awareness of the problems of algorithmic and data bias has been growing but even with careful review of the algorithms and data sets, it may not be possible to delete all unwanted bias, particularly when systems learn from historical data that encodes cultural biases. This workshop will take a rich and cross-domain approach to this complicated problem, providing a venue for researchers to move beyond awareness of the problem of algorithmic and data bias to focus on practical strategies for handling it.
处理网络偏见2019:主席欢迎和研讨会总结
网络科学会议的一个关键方面是探索技术、数据、算法、平台和网络中的人的道德挑战,以及检测、预防和预测网络数据中的异常,包括算法和数据偏差。处理网络偏见(HWB)是一个新的研讨会,专注于识别和处理网络偏见的最佳实践。人们对算法和数据偏见问题的认识不断提高,但即使仔细审查算法和数据集,也可能无法删除所有不必要的偏见,特别是当系统从编码文化偏见的历史数据中学习时。本次研讨会将采取丰富和跨领域的方法来解决这个复杂的问题,为研究人员提供一个场所,让他们超越对算法和数据偏见问题的认识,专注于处理它的实际策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信