Extracting symbolic objects from relational databases

Véronique Stéphan
{"title":"Extracting symbolic objects from relational databases","authors":"Véronique Stéphan","doi":"10.1109/DEXA.1996.558606","DOIUrl":null,"url":null,"abstract":"Our aim is to define operators to retrieve groups of individuals from a relational database. The way we describe these groups makes it possible to analyse them by symbolic data analysis methods which extend classical ones to more complex data. In so far as the input consists of groups of data extensionally defined in the database, our problem is to find the best description representing each group in the formalism (called symbolic object) of symbolic data analysis. In our process, we take into account data from tables together with additional knowledge such as taxonomies. To describe each group, we perform a generalization step and a specialization one. Final descriptions are based on the notion of homogeneity within a group and they minimize a volume criterion.","PeriodicalId":438695,"journal":{"name":"Proceedings of 7th International Conference and Workshop on Database and Expert Systems Applications: DEXA 96","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 7th International Conference and Workshop on Database and Expert Systems Applications: DEXA 96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.1996.558606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Our aim is to define operators to retrieve groups of individuals from a relational database. The way we describe these groups makes it possible to analyse them by symbolic data analysis methods which extend classical ones to more complex data. In so far as the input consists of groups of data extensionally defined in the database, our problem is to find the best description representing each group in the formalism (called symbolic object) of symbolic data analysis. In our process, we take into account data from tables together with additional knowledge such as taxonomies. To describe each group, we perform a generalization step and a specialization one. Final descriptions are based on the notion of homogeneity within a group and they minimize a volume criterion.
从关系数据库中提取符号对象
我们的目标是定义从关系数据库中检索个体组的操作符。我们描述这些群体的方式使得通过符号数据分析方法来分析它们成为可能,这些方法将经典数据分析方法扩展到更复杂的数据。只要输入由数据库中扩展定义的数据组组成,我们的问题是在符号数据分析的形式化(称为符号对象)中找到代表每组的最佳描述。在我们的过程中,我们将考虑表中的数据以及诸如分类法之类的附加知识。为了描述每个组,我们执行一个泛化步骤和一个专门化步骤。最后的描述是基于群体内同质性的概念,它们最小化了体积标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信