Demo: Spatio-temporal template matching for ball detection

K. Kumar, Pascaline Parisot, C. Vleeschouwer
{"title":"Demo: Spatio-temporal template matching for ball detection","authors":"K. Kumar, Pascaline Parisot, C. Vleeschouwer","doi":"10.1109/ICDSC.2011.6042940","DOIUrl":null,"url":null,"abstract":"This paper considers the detection of ball in a basketball game covered by multiple loosely synchronized cameras. First, plausible ball candidates are detected on the nodes of a 3D grid defined around the basket. This is done by correlating independently in each view the spatial template of the ball with a precomputed foreground mask. Efficient implementation of this step relies on integral images. Afterwards, false positives are filtered out based on a temporal analysis of the ball trajectory. This analysis builds on the Random Sample Consensus (RANSAC) method, with a ballistic trajectory model. The integrated approach is demonstrated on a real-life dataset, and appears to be both effective and efficient.","PeriodicalId":385052,"journal":{"name":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2011.6042940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper considers the detection of ball in a basketball game covered by multiple loosely synchronized cameras. First, plausible ball candidates are detected on the nodes of a 3D grid defined around the basket. This is done by correlating independently in each view the spatial template of the ball with a precomputed foreground mask. Efficient implementation of this step relies on integral images. Afterwards, false positives are filtered out based on a temporal analysis of the ball trajectory. This analysis builds on the Random Sample Consensus (RANSAC) method, with a ballistic trajectory model. The integrated approach is demonstrated on a real-life dataset, and appears to be both effective and efficient.
演示:球检测的时空模板匹配
研究了由多个松散同步摄像机覆盖的篮球赛中球的检测问题。首先,在篮筐周围定义的三维网格节点上检测可信的候选球。这是通过在每个视图中将球的空间模板与预先计算的前景蒙版独立关联来完成的。该步骤的有效实现依赖于积分图像。然后,根据球轨迹的时间分析过滤掉假阳性。该分析建立在随机样本一致性(RANSAC)方法的基础上,采用了弹道模型。综合方法在现实生活数据集上进行了演示,并且看起来既有效又高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信